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INTRODUCTION

Electric propulsion provides higher exhaust speeds than chemical techniques,
thereby offering considerable economic advantage for several applications in space.
Today, these applications include on-board propulsion for satellites that already require
significant electrical power to accomplish their missions (e.g., communication). Such
propulsion presently serves station-keeping needs, but may also extend to re-
positioning geosynchronous satellites, drag compensation and orbit-raising. While
electric propulsion no longer waits for dedicated power sources and primary propulsion
missions, flight experience gained in near earth missions may soon encourage
application of electric propulsion for planetary and deep space exploration.

Basic research can contribute to the application of electric propulsion by
providing the tools and insights needed for improvements in specific impulse, thrust
efficiency and lifetime. The present research recognizes that transport processes play a
major role in determining the behavior of plasma thrusters. Modern computational
techniques make it possible to simulate complex plasma and electromagnetic
interactions within plasma thrusters, but depend for accurate results on the properties of
the propellant material. For devices such as the pulsed plasma microthruster (PPT),
Teflon has been the propellant of choice. Self-consistent modeling of PPT behavior
requires a description of the composition of Teflon as it changes from complex
molecular forms to highly-ionized, constituent atoms. Knowledge of this composition
allows calculation of thermodynamic and transport properties. This report describes the
development of a model for the composition of Teflon plasma in which separate electron
and heavy-particle temperatures exist.

During the period of the grant, the Principal Investigator had additional duties as
visiting Chief Scientist for Advanced Weapons and Survivability, Phillips Laboratory,
Kirtland AFB, NM. Part of these duties included examination of diffusive processes in
plasma devices, such as high-power microwave sources. The particular problem of
impedance collapse in high-voltage, electron-beam diodes involves plasma layers in
close contact with electrodes. Modeling such layers with the MACH2 code, a subject
related to numerical simulation of plasma thrusters, led to a technical paper included as
an appendix to this report. Technical discussions at Phillips Laboratory, as part of the
work on plasma closure, resulted in improvements to the treatment of both resistive
transport and non-neutral plasma regions in the MACH2 code. These improvements
assist the use of MACH2 for modeling various kinds of electric thrusters.

BACKGROUND

Over the past several decades, research and development of electric propulsion
has embraced a great variety of candidate techniques. Standard texts provide the
taxonomy of these techniques. The three main categories of electrothermal,
electromagnetic and electrostatic propulsion comprise dozens of concepts. Plasma
thrusters often combine aspects from more than one category of electric propulsion.



They tend to share characteristics of simplicity and robustness of construction, and
typically have electrical impedance values in the range of 1 — 100 mQ. Plasma thrusters
operate in steady state and pulses of duration down to sub-microsecond. The inherent
physics of plasma thruster operation may remain the same over this wide range of time
scales. If all conditions stay approximately constant for times much longer than the time
for flow transit through the thruster, operation is often termed ‘quasi-steady’. Propellant
supply, by gas injection vs ablation offers an additional distinction for plasma thrusters.
Furthermore, the magnetic field in the thruster may originate with plasma currents or by
application of external magnets.

The present research focuses on a form of plasma propulsion embodied by the
puised plasma microthruster, generally abbreviated as PPT. In its traditional,
rectangular form, driven by an LRC-circuit, a Teflon propellant bar separates two
electrodes connected to a charged capacitor in vacuum. A spark plug provides a small
amount of initial plasma, triggering an electrical discharge across the exposed surface
of the Teflon. Heat transfer from this discharge causes evaporation of propellant
material, which then accelerates through the discharge due to electromagnetic and
pressure forces. As propellant evaporates with each discharge, a simple spring
mechanism advances the propeliant bar into the thrust chamber. Two limiting modes of
operation can occur depending on the details of the heat transfer and acceleration
process. For sufficient heat transfer, the surface provides new electrically conducting
material, so the discharge path can remain adjacent to the propellant surface in an
‘ablation arc’ mode. Otherwise, the discharge must follow the material it accelerates, so
the PPT operates in the ‘propagating’ mode.

Choice of the PPT for a research focus follows from its special status within
electric propulsion. For many years, of all the various electric thruster concepts, only the
PPT had achieved acceptance for application on actual space missions. Recently, with
the continuing success of the kilowatt-level arcjets on Telstar IV, electric propuision
should see representation as well by xenon ion engines and Hall thrusters, such as the
SPT-100. In contrast with the PPT, these other devices have all attained a high degree
of refinement by decades of development in the laboratory, achieving perhaps their
optimum levels of performance. For example, the thrust efficiencies of xenon ion
engines and the SPT-100 can exceed 70%, while flight models of the PPT have
efficiencies of less than 10%. The simplicity of the PPT allowed its selection for space
flight application, even with such low efficiency relative to other concepts. Improvements
to PPT thrust efficiency and specific impulse represent today’s challenges for research
and development. Only the PPT combines decades of flight use with considerable
opportunity for increasing thrust efficiency and specific impulse.

APPROACH

The experimental simplicity of the PPT has permitted empirical studies to provide
sufficient data and experience to allow development of space-qualified hardware used
in actual missions without the benefit of a complete theoretical understanding.




Unfortunately, these studies have failed to improve PPT efficiency (with notable
exceptions at high energy) above several percent. Furthermore, little insight has been
forthcoming to guide the choice of candidate propellants that might offer higher specific
impulse or better plume characteristics than the traditional use of Teflon. Instead,
graphs summarize empirical results for impulse-bit and mass loss per shot vs stored
energy in the PPT capacitor. From these data, empirical constants permit closure of
simple models for PPT performance, thereby allowing design of ablation-fed, MPD
thrusters . Minor manipulation of system equations, along with data on masses and
lifetimes of components (e.g., capacitors), can indicate optimum parameters for PPT
application to particular missions. The renewed attention to the PPT for small satellites,
has created a need for theoretical tools that can predict directions for improving PPT
performance in terms of mass utilization, efficiency and component reliability.

The problem of associating the mass evolved from the propellant surface with the
impulse developed during the operating pulse represents the principal difficulty in
establishing the performance of the PPT in terms of its specific impulse or (average)
exhaust speed. Empirically, measurement of the total mass lost by the surface over
many discharges provides the mass loss per shot. This value divided into the impulse
per shot offers the average exhaust speed. Experimental data suggest that the mass
loss is proportional to the stored energy. This intuitively pleasant result implies a
constant value for the average exhaust speed, and a reasonable way to scale new
designs from existing data. At this level of discussion, however, there is no further
insight to provide a firm basis for improving PPT performance.

It is necessary to develop theoretical modeling that can incorporate physical
processes not captured by lumped-circuit representations and empirical scaling laws.
For example, the discharge current must have the opportunity to flow both through
paths propagating along the accelerator electrodes and through a path remaining on the
propellant surface. This requires a formulation at least at the level of
magnetohydrodynamics in order to obtain the distribution of current density within the
thruster. An effort to extend PPT operation to the millipound level first attempted such
an approach. At the time, however, computational simulation of plasma acceleration
was too difficult to achieve within a program largely devoted to experimental exploration
and development. Over the past decade, modern calculational techniques, created to
support experiments with powerful plasma-guns, have been applied to plasma thruster
problems. These applications included quasi-steady MPD arcjets and steady state,
applied-field, MPD thrusters, and more recently PPTs.

The need for self-consistent addition of mass during the discharge pulse makes
numerical simulation much more difficult for the PPT than for a gas-fed, plasma thruster.
Presumably, heat transfer from the plasma discharge to the exposed surface of the
propeliant results in evaporation of material through which the discharge current flows.
Electromagnetic forces accelerate this material, while resistive heating contributes to
the overall flow enthalpy. Typically, pulsed plasma discharges propagate with the
accelerated plasma, in order to follow the electrically conducting material, unless




discharge processes create new conducting material closer to the source of
electromagnetic power.

The PPT traditionally ignites when a spark plug generates an initial plasma
between the accelerator electrodes. If new material does not evaporate quickly enough
from the propellant surface, the discharge will accelerate this initial plasma, travelling
with it along the electrodes. The increased separation of the discharge from the
propellant surface reduces the opportunity for heat transfer and thus encourages a
propagating mode for discharge operation. Similar behavior would occur if the discharge
current waveform resulted in rapid acceleration of an initial amount of material
evaporated from the propellant surface before heat transfer was sufficient to maintain
further mass addition. On the other hand, adequate heat transfer to the surface can
provide a continual source of electrically conducting material, allowing the discharge to
remain adjacent to the surface, thereby sustaining heat transfer.

To determine the actual mode of operation of the PPT for various possible values
of parameters and arrangements requires time-dependent calculations combining
electrical circuitry, MHD flow and heat transfer in the propellant. The MACH2 code,
modified to include the features needed for simulating the PPT, was first used to model
the LES-6 thruster. Modifications included the development of a separate numerical
model for two-dimensional, unsteady heat-flow in the solid propellant, based on the net
heat flux to the exposed surface. This heat flux comprised heat conduction and radiation
from the plasma discharge, and convection due to evaporation or condensation of the
propellant material. (Earlier models for ablation of solids assumed a thermal diffusion
depth that increased with the square root of elapsed time. Such an approach might
succeed for monotonically increasing temperatures, but cannot service the variations
possible in the PPT.) The initial calculations for LES-6 captured both the magnitude and
variation of the impulse-bit for the available values of experimental data. Such
agreement must be considered somewhat fortuitous, the result of compensating errors,
because of several limitations. These include the use of a two-dimensional calculation
(in the plane of the current flow) for a three-dimensional problem, and approximate
formulations for plasma composition and transport coefficients.

Heat flux from the plasma discharge depends on the distribution of current
density near the propellant surface and the transport coefficients for electrical and
thermal conductivity in the partially ionized flow. Present calculations use an existing,
single-temperature equation of state for Teflon (from the SESAME tables) along with
classical transport formulas based on Coulomb collisions. The principal effort under the

- present grant has been to develop a two-temperature, LTE model for Teflon in the

regime of interest for PPTs. This model includes 25 species (atoms, molecules, ions
and electrons) and allows separate heavy-particle and electron temperatures.

An idealized analysis, limited to one-dimensional, quasi-steady MHD flow, but
incorporating resistive heating and thermal diffusion, has also been developed to
provide some guidance on PPT operation and propellant behavior. In particular,
application of a magneto-sonic choking condition at the downstream edge of the




discharge determines the mass flow rate needed by the MHD flow for given values of
total current and size. This mass flow rate in turn specifies the surface temperature of
the propellant and the associated equilibrium vapor pressure. The heat delivered to the
propellant to achieve these conditions then depends on the given current waveform and
duration.

PROGRESS

The five quarters of sponsorship under the present grant saw accomplishment of
the first portions of the proposed two-year effort. Appendix | displays much of this work
in the form of a presentation given at the AFOSR workshop in San Diego, 28 — 31 July
1997. Appendices Il and Ill provide copies of technical papers on the directions for PPT
improvement (based on the idealized model) and the two-temperature, LTE model for
Teflon. The 25™ International Electric Propulsion Conference, Cleveland, OH, 24 — 28
August 1997, served as the forum for these papers, which will appear in the conference
proceedings. Appendix IV provides an updated version of the paper on transport
properties of nitrogen, which led to the concern with severely non-monotonic variations
of thermal conductivity with temperature and pressure in molecular gases. This concern
resulted in attention (Appendix V) to capturing such variations in numerical simulations
by means of computational grids that adapt to thermal conductivity, rather than simply
geometry or flow density. Appendix VI presents the latest form of the two-temperature,
LTE model for Teflon, including more accurate calculation of the effects of rotation and
vibration of polyatomic species. The new model also allows for variation of coupling of
vibrational states to electrons vs heavy-particles.

Appendix VIl provides a paper, presented at the 11" IEEE International Pulsed
Power Conference, Baltimore, MD, 30 June — 3 July 1997, on impedance collapse in
high-voltage, electron-beam diodes. It summarizes the work on diffusive processes near
electrodes, performed by the Principal Investigator while at Phillips Laboratory, Kirtland
AFB.

CONCLUDING REMARKS

The most recent theoretical activity at Ohio State in support of PPT development
has been under NASA sponsorship and comprises continuation of MACH2 calculations
applied to the benchmark PPT, and extension of such calculations to coaxial
configurations. The latter effort draws on earlier success in using MACH2 to model
quasi-steady MPD thrusters. Simulations of coaxial PPTs have already included the use
of plug nozzles to provide improved flow expansion. Modification of MACH2 to couple
the PPT to other circuits, such as PFNs and the inductively-driven circuit has also
begun.

Under AFOSR sponsorship, transport coefficients based on the two-temperature
LTE model for Teflon are now developing. Extension of such modeling to other



candidate materials could guide propellant selection. Decomposition of solid propellants
exposed to high current discharges remains a critical area of concern for both propellant
choice and theoretical modeling. The idealized model has already suggested a
connection between discharge operation and material properties. At sufficiently high
currents, the temperature needed to supply the mass flow to the discharge will exceed
values at which the solid propellant decomposes in some manner. For example, the
surface may liquefy. A thin liquid film pressed by vapor against the still solid interior of
the propellant can splash laterally on the electrode and insulator surfaces of the thrust
chamber, resulting in mass ejection at low speed. If such a mechanism exists in present
PPTs, it can provide a significant limitation on PPT performance. Proper choice of
propellant and operating magnetic field to avoid pulsed liquid films would avoid this
difficulty. The results of the idealized model depend on transport properties, such as the
thermal conductivity. Decomposition of solid propellants involves particular values of
temperature (e.g.,, melting point). Combination of plasma transport and solid
decomposition will require self-consistent calculations based on accurate plasma
properties and careful numerical modeling.



APPENDIX |

Transport Processes in Pulsed Plasma Thrusters
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DIRECTIONS FOR IMPROVING PPT
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ABSTRACT

Potential improvements in PPT performance
are discussed from analytical considerations, and
comprise the following sequence of conditions that
need to be established. Presently, the exhaust of the
PPT is allowed to expand without regard to extracting
directed Kkinetic energy efficiently from the hot,
highly-magnetized plasma in the thrust chamber.
Analytically, it appears that improvements by a factor
of 1.7 in specific impulse and three in thrust
efficiency should be possible with proper expansion.
A major area for improving PPT performance is the
reduction of relative mass expelled that is not
electromagnetically-accelerated to high speed.
Analytical modeling indicates that mass evolved by
post-discharge evaporation can exceed that during the
discharge by a factor of more than five. An
inductively-driven circuit, previously suggested,
would maintain electromagnetic acceleration as the
propellant surface cools. This circuit also improves
PPT performance by eliminating losses and
difficulties of present oscillatory waveforms.

INTRODUCTION

It is useful to consider directions for
improving the pulsed plasma microthruster (PPT) so
that it may be applied to a greater range of missions.
In particular, higher thrust efficiency, and, for some
uses, higher specific impulse are needed. It is critical
that improvements to the PPT retain the simplicity
that allowed its early operation in actual space
missions, and maintain the connection to the PPTs
extensive flight-experience. Of the four or five
devices selected from dozens of concepts in electric
propulsion, only the PPT has both a record of actual
accomplishment in space, and the potential for
significant improvement through further research.
The other devices have already been taken to high
levels of performance (probably their limiting values)
by many years of sustained laboratory research and
development.

Copyright 1997 by the Electric Rocket Propulsion
Society. All rights reserved.

BASIC OPERATION OF PRESENT PPT

The traditional pulsed plasma microthruster
(PPT) operates with an unsteady, oscillatory
discharge. This is a consequence of the relatively low
energies used by PPTs for satellite station-keeping.
With a stored-energy in the capacitor on the order of
20 J, at an initial voltage of 2 kV, the capacitance is
only 10 uf.; circuit inductance values below 100 nh
are difficult to obtain with commercially-available
components. The impedance of an LRC-circuit for
critical damping is 2(0UC)YZ = 200 mQ. The
characteristic impedance of the electromagnetically-
accelerated discharge flow, however, is (for a
propagating discharge, with inductance gradient, L):

Zg=Lu/2 1)

so, at an exhaust speed of 40 km/s, and L' =
106 b/m, Z4 = 20 mQ. Thus, the circuit is hardly
loaded by the thruster, and can deposit much of its
energy in the internal resistance of the capacitor. The
losses associated with such resistance increases the
operating temperature of the capcacitor. The
combination of higher temperature with the severe
and repeated reversals of the capacitor voltage
reduces the reliable life of the capacitor, which must
be compensated by a reduction in design voltage and
energy per unit mass.

It is also typical of traditional PPT operation
that the discharge flow simply exits abruptly from a
constant area. For a magnetized-plasma flow, this
fails to extract energy from the magnetic field (and
any accessible thermal modes) into the directed
kinetic energy of the exhaust. An additional source of
inefficiency in traditional PPTs has recently been
suggested after initial attempts at numerical
simulation of the LES-6 devicel. The numerical
calculations, using the MACH2 code, agreed well
with the impulse-bit per shot, but the mass ablated
during the discharge pulse was about a factor of ten
lower in the simulation vs the experimental data for
mass loss per shot. Subsequent calculation indicated
that evaporation of the Teflon propellant between
firings might account for this mass discrepancy. If a
major portion of the mass per shot is lost at relatively
low speed, then the efficiency of the PPT is
substantially reduced from ideal values.

In combination, the efficiency factors
associated with external-circuit resistance (<60%),
improper flow expansion (<33%) and mass loss at
low speed (<50%) multiply to provide a total thruster
efficiency of less than 10% . By addressing each of
the inefficiencies in turn, it should be possible to

improve the performance of the PPT substantially.



Consideration may be framed first in terms of quasi-
analytical modeling, before invoking more powerful
numerical tools and testing ideas experimentally.
Idealized modeling may be applied to initial design of
proper flow expansion, to the questions of mass loss
and thermal management and, finally, to improved
circuitry for the PPT.

IDEALIZED MODEL FOR PPT

The essential features of the ablation-fed
discharge in the PPT include resistive heating near
the entrance of a constant-area channel (where the
back EMF is relatively low), heat transfer from the
discharge back to the propellant surface to provide

mass by ablation, and electromagnetic acceleration of

the plasma by the Lorentz force. In pulsed operation,
particularly with  high-frequency, oscillatory
waveforms, the preceding features are unsteady and
require numerical modeling for accurate calculations
in time and space. A first step in simplifying analysis
of the PPT, while attempting to retain the
fundamental interactions among resistive heating,
heat transfer and flow, restricts examination to a
steady state, and one-dimensional flow. (The details
of such examination are briefly described in
Appendix 1) The use of a steady analysis in
discussing the PPT, however, means that comments
can only be applied to situations in which there is
enough time for the discharge flow to operate with a
balance of heat conduction, resistive dissipation and
flow acceleration. Convective times based on the
discharge thickness divided by the flow speed must
certainly be less than the time for variation of circuit
current. Furthermore, the ablating surface must be
able to supply new material in times shorter than the
convective time. Thus, for example, discharges that
lift off of refractory insulators may remain in an
unsteady, propagating mode, rather than achieving
the quasi-steady situation of the present analysis.

For a Teflon-based PPT, the analysis of
Appendix I suggests that an ablation arc, with a
thickness less than two millimeters, is formed
adjacent to the propellant surface. In the numerical
example, the speed of the flow through the arc
increases by a factor of about three to an exit velocity
of 41 km/s. The characteristic convective time for the
flow structure is’ therefore about 0.1 psec. Heat
conduction to the colder upstream boundary
automatically supplies the power needed to dissociate
and ionize the flow, and also the relatively minor,
additional power level required to provide mass flow
by ablation. The calculated size and timescale
suggest that the analysis is consistent with PPT
operation at frequencies (within the discharge pulse)
less than a MHz, and dimensions greater than a cm.

SPECIFIC IMPULSE

As previously noted in a simpler analysis

(without heat conduction)Z, the proportionality of
resistive heating and electromagnetic work, in the
context of a flow in which heat is largely absorbed by
the ionization of the propellant, leads to an exhaust
speed that scales closely with Alfven critical speed.
Thus, the specific impulse of self-field, plasma
thrusters, operating with mass addition (vs constant
mass, propagating discharges) will tend to values
proportional to Alfven critical speed, if heating can
supply additional conducting material.
Improvements of PPT performance, in terms of
higher specific impulse, therefore, would require
propellants with lower average molecular-mass than
the Teflon presently used. In the present example,
the computed exit speed already corresponds to a
specific impulse of 4180 s. Even moderate attention
to proper expansion of this magnetosonic flow to
magnetic field-free conditions will offer values of
specific impulse that cover the range of any near term

missions, (upwards of 7000 s). The earlier analysis2

suggests improvements by up to 3172, The principal
reason for the more modest values of specific impulse
(~ 1000 s) is mass that is not accelerated electro-

. magnetically (e.g., post-discharge evaporation).

MASS ABLATED DURING DISCHARGE

By the analysis of Appendix I, the necessary
mass-flow rate is actually controlled by a
magnetosonic condition in the constant-area channel,
rather than a separate condition on heat transfer to the
propellant surface. The details of such heat transfer
adjust to satisfy the mass flow constraints in the
overall MHD flow. The mass loss during the
discharge pulse may thus be estimated from the mass
flow rate (per unit area):

w=pu (2)
where the speed at the sonic point is:
W ={B2/p 1+ 22 3
and the mass density there is:
p*=(6"B*2/2n) /R'T* @
The temperature at the somic point is obtained in
g,x;.ns of the magnetic field at the propellant surface,

T*={Nfiu®n/K)2)25 8125 (5)




The mass flow rate is therefore proportional to B 19/ S,
For a constant current, the mass ablated during a
pulsetime tp is merely wAtp, where A is the area of
the ablating surface. In the case of an exponentially-
decaying sinusoidal pulse, within the quasi-steady
approximation, the mass flow rate may be integrated
over the oscillatory waveform; if the ratio of risetime
to decay time is 0.3, for example, the mass ablated is
0.933woAty , where tg is the risetime and wg is the
mass flow rate per unit area based on the undamped
amplitude of the current. Note that this represents a
nearly linear dependence on stored energy, W, in the

capacitor (Am ~ W2/10) for the mass ablated during
the discharge.

THERMAL CONDITIONS AT SURFACE

The mass lost between discharges may be
considered in terms of the temperature of the
propellant surface. From the idealized analysis, it is
possible to estimate the surface temperature of the
propellant that is consistent with the flow conditions.
In particular, the equibrium vapor pressure should
equal the total pressure at the entrance to the ablation
arc. A formula for the equilibrium vapor pressure for
Teflon is:

Peq=Pcexp (- Tc/T) )

with T, = 20,815 K and p = 1.872 x 1020
N/m2.

The total pressure calculated from the one-
dimensional, idealized model is:

pt=p1 + p1us? Q)

=(B12/2uf2)[B* 01/w1
+ 2+ M1 ]

The necessary surface temperature is then:

Ts=Tc/In { pc/ (B12/ 2 £12)[ B* 01/001
+ 2+ 1} (8)

For the numerical example of Appendix I, the surface
temperature is 600 K. Note: this value is only weakly
dependent on the operating magnetic field, but
material transitions can be quite sensitive to exact
values of temperature. This particular value is very
close to the melting point of Teflon (~ 600 K).
(Nonuniformities in arc distribution across the face of
the propellant might cause local melting in any
event.) The depth of propellant heated to this
temperature  during  pulsetimes of  several
microseconds is less than a few microns. Growth of

perturbations of a liquefied surface due to Rayleigh-
Taylor instability would be suppressed for
wavelengths approaching the depth of the layer,
while the exponential growth of shorter wavelengths
would not persist beyond amplitudes comparable to
these wavelengths. Thus, micron-size droplets might
be expected, especially from edges. Such droplets

would be responsible for mass loss by surface

disruption, as indicated in some experiments?.

THERMAL MANAGEMENT

It has been suggcsted1 that the loss of mass
between shots depends critically on the overall
thermal management of the PPT, both in the
laboratory and in space. The estimated surface
temperature is well above mean-values within the

propellant measured in laboratory tests? at total
power levels of 40 W (40 J at 1 Hz) which indicate a
rise over several thousand shots from room
temperature (300 K) to about 370 K. For the
acknowledged low efficiency of present PPT
operation, only a small fraction of the total power is
delivered to the Teflon surface. The estimated surface
temperature allows calculation of the heat deposited
in the surface during the pulse, based on the thermal
skin-depth , &:

H=pcAd (Ts-Tj) ©)

where the thermal skin-depth is given in
terms of the pulsetime ty, as:
d=(ktp/pc)l2 (10)

With k = 0.305 W/m-s-K, p = 2.15 x 103 kg/m’, and
¢ = 1171 J/kg, a pulsetime of 10 ps would provide a
skin-depth of 1.1 microns. At a surface temperature
of 600 K, this contains 637 J/m? of heat added by the
discharge pulse, which represents an average heat
load to a 4 cm? surface of 0.25 W at a 1 Hz repetition
rate. This exceeds the power required to evaporate
Tetlon from the surface by a factor of 5 (using the
mass flow computed in Appendix I and a heat of
vaporization and de-polymerization of 3.67 MJ/kg).
The "extra” power delivered to the surface has
consequences for both late-time pulsed and steady
mass evolution.

After the discharge pulse ends, the heat
deposited in the skin-layer will be shared with the rest
of the solid propellant in a depth that continues to
increase as the square-root of time. Without further
heat addition (or significant cooling due to ablation),
the surface temperature will decrease inversely with
this depth:

(Ts - Tp) / (Tsi - To) = (tp / t )12 an




where Ts;j is the surface temperature at the
end of the discharge pulse (t = tp), and T, is the base
temperature of the propellant. The mass evaporated
as the surface cools (for t > tp ) may be estimated
using this time-dependence of the surface
temperature in Eqn. 6.

By assuming one-dimensional expansion of
the surface vapor to a (thermally) sonic condition, the
mass flow per unit area is:

w=@ /2Ry + D12 ps 1 (YRT5) 12 (12)

Integration of this mass flow rate provides a total
evaporated mass (for t > tp), A, that is proportional
to the magnetic pressure and the pulsetime, allowing
comparison with the mass ablated, Amqg , during the
discharge pulsetime:

Ame/ Amg = K{1 -exp (- Tc/ Tp) / exp (- Tc/ Tsi)}

(Te/ TH2 (T 1 T2 (1-
T / Ts)IB (1 + YB*12)(y + 1)/ 4y 112

(13)
For the conditions of the previous numerical
example, a base temperature Ty, = 370 K, and the
factor K = 1.26, the ratio of mass evaporated as the
surface cools to that ablated during the discharge
pulse is 5.1 . This ratio decreases to 4.3, if the base
temperature of the propellant is kept at 300 K,
indicating improved performance of PPTs with better
cooling. The ratio increases largely as B 155, due to

the variation of T*, and thus is rather insensitive to
the amplitude of the circuit current. Longer
pulsetimes increase the mass ablated during the
discharge, but also increase the heat deposited in the
solid propellant, which maintains the surface
temperature for a longer time after the pulse, allowing
significant evaporation to continue longer. Major
improvements will require either optimization of
material properties or matching of the power circuit
to the ablation process to avoid evolution of mass
when electromagnetic forces are absent.

QUASI-STEADY, INDUCTIVE OPERATION

One approach to preventing such evolution
would reduce the surface temperature needed to
support the mass flow through the discharge as
thermal conduction into the solid cools the surface.
After an initial pulsetime due to the current rise, tp=
tr, the surface temperature would then decline
according to Eqn.11, if no significant additional heat
deposition is required in order to supply mass flow to
the discharge. Now, let the current decrease so that

0.2

the required temperature follows the decreasing
temperature of the surface:

J/Jo=B1/Bjo
=exp[- (Te/ To) / (1 + (Tsi / Tp - Di(tp /)12]
lexp{-(Tc/Tb)/ (1 +(Tsi/ Tb - 1)]
(14)
This is displayed in Fig. 1 with t in units of the
risetime, tr = tp. (Temperature values are the same as
in the earlier discussion.) Such a waveform may be
compared with the experimental current behavior
(Fig 2) obtained with an inductively-driven circuit® in
which a plasma discharge (in this case a second PPT)
is used to crowbar the capacitor shortly after peak
current.

1
0.8
0.6

0.4

1.9 2 2.5 3
Figure 1: Normalized current waveform, J / Jo vs
time in units of risetime, t / t;
kA [

W » O

1 1 1 | ]

10 20 30 40 50 60
usec |
Figure 2: Experimental current waveform for
inductively-driven circuit driving PPTs




The use of a inductively-driven circuit not
only provides a current waveform that might alleviate
mass evolution after the current pulse, but also avoids
the severe voltage-reversals on the capacitor. With
some attention to reducing the resistance of the
external circuit to a small fraction of the PPT
impedance, the electrical efficiency should greatly
improve. From the idealized analysis, the impedance
of the PPT is:

Z=u*B*n/J (15)

where h is the length of the discharge. For
the values previously used, and h =2 cm, Z =33 mQ2.
At Jo = 10 kA, and an initial circuit energy of 20 J,
the inductance of the store could be 400 nh, for which
the characteristic decay time of the waveform would
be 12 psec; the capacitance at an initial voltage of 2
kV is 10 pf, so the risetime is about 3.1 usec.

CONCLUDING REMARKS

The idealized analysis has indicated that
evolution of mass after the discharge pulse is a
fundamental consequence of creating mass by
ablation during the discharge. It is therefore useful to
maintain electromagnetic forces while the surface
cools. This can be accomplished simply by means of
an inductively-driven circuit, which merely involves
placing a low impedance across the energy-storage
capacitor shortly after peak current. Such a circuit
was originally suggested5 to improve PPT design by
allowing high energy per unit mass at low total
energies (without the difficulties of parasitic
inductance and internal resistance in the capacitor). In
addition to reducing internal losses, reduction of the
amplitude of voltage-reversal on the capacitor
improves reliability at high enmergy density.
Furthermore, the new circuit provides longer
discharge times, so that proper flow expansion
techniques can be used; nozzle sizes divided by flow
speeds require quasi-steady currents for several usec.

While the idealized analysis can guide
general considerations, and may closely match
experimental data in some cases, accurate analysis
requires numerical tools, such as MACH2. This
includes design of a properly expanded PPT flow,
which has recently been successfully attempted with
an annular PPT exiting to a plug nozzle.
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APPENDIX I

ONE-DIMENSIONAL, STEADY
PLASMA THRUSTER FLOW WITH
HEAT CONDUCTION

The conservation equations for a one-
dimensional, steady plasma flow with resistive
heating and heat conduction are written as:

Mass-flow :
pu = constant =w (AD)

where p is the local mass density and u is the

local flow speed. The constant may be evaluated in
terms of values at a particular location, w = p*u*.

Momentum :
pudu+d(B22u+p)=0 (A2)
dx dx
50, wu + B2/2y + p = constant

=p*u*2+B"22u+p*  (A3)

where B is the local magnetic field and p is
the local pressure; starred quantities are evaluated at
the same location. For simplicity, the pressure may be

written as:
p=pRT (A4)

where T is the local temperature, and R is an
appropriate gas constant. The momentum equation
then becomes:




wu + B2/2y + wRT/H

=p*u* 2+ B* 2 + p*R* T (AS5)

The temperature distribution depends on the

interplay of convection, heat conduction, resistive

dissipation, and work, which may be written in terms
of the third conservation equation:

Energy:
wdU = dkdT + nj2 - pdu (A6)
dx dx dx dx

where U is the energy per unit mass, k is the
thermal conductivity, n is the electrical resistivity,
and j is the current density. In steady state, and one-
dimension, the resistive dissipation may be written in
terms of an electric field that is uniform:

E=nj-uxB+(jxB-gradp)/nee (A7)
= constant = E* (A8)

where the electric field can be evaluated at
the starred location for which j = j* , so E*= n*j* +
u*B*.  (Note that the gradient of the electron
pressure, pe, divided by the electron density, ne, does

not contribute to nj2 in the one-dimensional problem,
nor does the Hall effect term.) The energy equation is
then given by:

wdU = dkdT + (E*-uB) - pdu (A9)
dx dx dx n dx

In general, solution of this equation can be
accomplished if the detailed behaviors of the energy
and pressure functions, and the transport coefficients,
k and n, are known in terms of temperature and
density.

For ideal plasmasAl, the thermal
conductivity and electrical resistivity can be written
in terms of formulas that only involve the
temperature, if the plasma is sufficiently ionized (and
does not change its degree of ionization) and
magnetic fields do not suppress the electron heat
conduction unduly. Thus,

k=Kp T2 and n=K./T32 (A10)

where Kp and Ky are constants. (We have
also ignored the variation of the Coulomb logarithm
here for continued simplicity.)

To delineate the flow structure, and avoid
losing general results in consideration of particular
plasma values, it is useful to non-dimensionalize
variables in terms of conditions at the starred location

(which might later be identified as a sonic point).
Thus, let:

6=T/T", w=u/u"+ f=B/B*,
and a=x/x¢c (A1D)
where xc is a characteristic distance
determined later. Three dimensionless parameters are
also obtained:
ﬁ* =p* / (B*Z 12u), Rm* =u*BY Tl*j*
and P=wepxe/KpT">/2 (A12)
where B* and R, are the plasma-beta and
local magnetic Reynolds number at the starred
location, and P is essentially a Peclet number based
on the characteristic length:
xc = (KKp!2 7% /u* B* (A13)
which is found by inspection of the

normalized equations. This characteristic length is the
scale size for a temperature gradient supported by

resistive dissipation.

There is an additional scale size for variation
due to the change in magnetic field associated with
the current density (that drives the dissipation):

dB = -yj (Al4)
dx
-g (E*-uB)/q

In terms of dimensionless variables, this equation
becomes:

df = -A(1+ URy™ -wf) 632 (A15)
do

where an additional dimensionless parameter
is obtained:

A = p (Kp /K )2T*5/2 / g* (A16)

= xo/(n*/pu™)

that relates the scale size for thermal conduction
balancing resistive dissipation, X, to that for which
convection balances diffusion of magnetic flux.

Solution of the set of normalized equation is
obtained by integrating in the upstream direction
from the starred location, where conditions are taken
as f(0) = 1,6(0)=1,and I'(0) = 0, (T =dO/da , is a



dimensionless temperature gradient), to insure that
uniform conditions are attained in the limit of high
magnetic Reynolds number. The actual extent of the
flow field is not prescribed, but is determined instead

by requirements at the upstream boundary (e.g.,
necessary heat flux to establish conditions of the

entering flow).

For the one-dimensional flow, it is useful to
specify a somic condition at the starred location,
rather than providing values for the mass flow that
might be inconsistent with such a condition. The
necessary value of u” is then given (in the limit of

Rm™ >>1) by:
u*2 = yRT* + B*2/p*y (A17)

The results of a sample calculation, performed using
Mathematica, are displayed in Figures A-1 to A-3.
Parameter values are A = 2.0, and P = 0.1, for which
% (= 2(y - 1)PA /y ) = 0.114. The local value of
magnetic Reynolds number is (arbitrarily) Rm* =10,
and the specific heat ratio is y = 1.4 . Distances are
measured upstream of the sonic point by the
dimensionless variable b=x/ x¢ .

To return to dimensional quantities, it is
necessary to connect the results of the normalized
calculation to the conditions of a particular thruster.
For example, the heat flux is: .

q=KpT72/x,)052 T (A18)

If the upstream boundary of the flow corresponds to
the entry point of cold propellant, the heat flux from
the discharge must be sufficient to raise the total
enthalpy of this mass to the initial conditions of the
discharge flow. For purposes of illustration here, the
necessary heat flux may be written as:

qr=w(Q+cpTy + u2/2) (A19)

where Q is the chemical energy per unit
mass (including the cost of vaporization, dissociation
and ionization), and the subscript 'l' refers to the
entry station of the flow. The characteristic

temperature T™ is then obtained in terms of the
chemical energy per unit mass, Q:

T" = (Q/cp) [(82T) /P - 6
- (Y- DE@+yB" w27 2y8% ]

(A20)
In Fig. A-4, the denominator of Eqn. 21 is displayed
for the same parameters previously used. Note that

the minimum value of T* corresponds to b = 1.6 . For

a Teflon plasma, fully dissociated into singly-ionized
constituents, Q is about 62 eV/50 amu, while ¢
would be 21 eV/50 amu-eV for the three heavy-
particles and three electrons. Thus, Q/cp Z 3, and the
minimum value of T is 1.2 eV. Higher temperatures,
however, are also possible and would be chosen in
order to satisfy other conditions of the thruster, such
as the operating value of magnetic field.

The driving source for the thruster can
typically be characterized in terms of the current
supplied. It is reasonable, therefore, to attempt to
specify thruster operation by the magnetic field, B,
at the entrance of the flow field. The magnetic field at
the sonic point is then B* = By / f(by) . The
temperature at the sonic point is related to the
magnetic field by:

T = {A/ u(Kn / K)l/2}25 By 25 (A21)

Consistent solution requires agreement of Eqns. 21
and 22 for a specified magnetic field, Bj. In the

present numerical example, this occurs at by = 1.88.
A total current of 10 kA over a 2 cm width provides a
magnetic field of B; = 0.63 Tesla at the entrance
implying (with f] = 1.56) a value of B* = 0.4 T at the
sonic point. For this value, the characteristic
temperature may be found in terms of the transport
properties of the plasma. (For an ideal, singly-ionized
plasma, the values of K¢ and Ky areAl;

Ke=521x10° A [W-m-eV372]
and  Kp=746x104/A [J/m-seV7//2]

where A is the so-called Coulomb logarithm,
and temperatures are measured in eV.) The
characteristic temperature (with A = 10) is then:

T

]

{AB*/u Kn/Kp)12 325 (A22)

7.8eV

With the magnetic pressure, and plasma temperature,
the mass density at the sonic point can be found in
terms of the plasma-beta:

p* = p*(B*2 /2n)/RT" (A23)
= 8.3 x 10 -3 kg/m3

The flow speed can also be obtained from
the sonic condition in the form:

u*2 = B2/p* W 1+y8% 2] (A29)




For the numerical values previously used, o =41
km/sec. The characteristic scale-size is 0.93 mm, so
the discharge thickness is d = byxc = 1.75 mm.The

mass flow per unit area is p*u™ = 3.4 kg/mz-sec. For

a cross-sectional area of 4 cm2, the mass ejected in
10 ps would be 13.6 ug.

Another relationship among parameters:
PA = pp*cpT*/ B*2 (A25)

provides the speed at the sonic point in the form:
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Fig. A-1 Normalized temperature, 6 vs normalized
distance, b, upstream of sonic point

1.5
1.4
1.3
1.2

1.1

0.5 1 1.5 2
Fig. A-2 Normalized magnetic field, f vs normalized
distance, b, upstream of sonic point

0.5}

uF= QU2 {[1+Y§* 21/1(052T ) /P -0 -
(V- 1)2 + ¥6%) @012/ 2Y8* JpA }12

(A26)
which displays the basic scaling with Alfven
critical speed.

While the numerical results in the present
example may be fortuitously close to values observed
in various PPT experiments, accurate predictions
require modeling based on the actual behavior of the
propellant in the full two- (and three-) dimensional,
unsteady environment of the thruster.
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Fig. A-3 Normalized flow speed, w vs normalized
distance, b, upstream of sonic point

1.5¢

0.5

rof]

0.3 i 1.5

Fig. A-4: [(0%2T )1 /P - 01 - (Y- )2 + Yp*) 012
/ 2Yp™] of Eqn. 20 vs normalized
distance, b, upstream of sonic point




APPENDIX i

Development of Equation-of-State and Transport Properties for
Molecular Plasmas in Pulsed Plasma Thrusters, Part I:
A Two-Temperature Equation-of-State for Teflon



95th

IEPC-97-124

DEVELOPMENT OF EQUATION-OF-STATE AND
TRANSPORT PROPERTIES FOR MOLECULAR
PLASMAS IN PULSED PLASMA THRUSTERS
PART I: A TWO-TEMPERATURE
EQUATION-OF-STATE FOR TEFLON

C. S. Schmabhl and P. J. Turchi

The Ohio State University

Columbus, Ohio

USA

25th International Electric Propulsion Conference
August 24-28, 1997, Cleveland, Ohio




DEVELOPMENT OF EQUATION-OF-STATE
AND TRANSPORT PROPERTIES FOR
MOLECULAR PLASMAS IN PULSED

PLASMA THRUSTERS PART I:
A TWO-TEMPERATURE EQUATION OF
STATE FOR TEFLON

C. S. Schmahl and P. J. Turchi
The Ohio State University
Columbus, Ohio
USA

ABSTRACT

The chemical composition of tetrafluoroethylene
(C,F,) is calculated with a two-temperature LTE
formulation. Twenty-five chemical species are
included in the analysis. The equilibrium constants
are calculated using the most recent spectroscopic
data available. Calculations are performed for
pressures from 0.001 atm to 1.0 atm and for
temperature ranges of 0.05 ev to 10 ev for both
heavy particle and electron temperatures.

INTRODUCTION

Knowledge of the chemical, thermodynamic, and
transport properties of a gas is required in almost any
gasdynamic analysis. Accurate thermochemical and
transport properties become particularly important in
high-temperature applications such as the pulsed
plasma thruster. In this paper, we shall concentrate
on calculating the equilibrium composition of a gas
mixture. This is the pecessary first step for
determining the thermodypamic and transport
properties of a gas.

There are three primary thermochemical states
possible for a gas. A calorically perfect gas has
specific heats that are constant, and the enthalpy and
internal energy are only functions of temperature. A
thermally-perfect gas, in which variable vibrational
and electronic excitation are taken into account, has
specific heats, enthalpy, and internal energy that are
all functions of temperature. If the conditions are
right for chemical reactions to occur, then we can
treat the gas as an equilibrium chemically-reacting gas

Copyright 1997 by the Electric Rocket Propulsion
Society. All rights reserved.

for which properties area all functions of temperature
and pressure. Even this can be generalized by stating
that the reacting gas is in local thermodynamic
equilibrium (LTE). This means that a local
Boltzmann distribution exists at each point in the
flow at the local temperature. We will extend this
statement further for the case of a two temperature
LTE gas modeled here. In this paper we calculate the
chemical composition of the gaseous Teflon monomer

(GF,).

POSSIBLE SPECIES, REACTIONS, AND
EQUILIBRIUM EQUATIONS

In this paper, we calculate the chemical
composition of tetrafluoroethylene (C,F,). The
analysis will include vibrational and electronic
excitation, dissociation, first molecular ionization,
and first through fourth monatomic ionization.
Throughout of the analysis, we shall assume a perfect
gas, where intermolecular forces are non-existent or
negligible. This might seem a strange assumption
when the gas is in the plasma state due to the
presence of Coulomb collisions, but it is a widely
used and accepted approximation.'

For a polyatomic base gas, C,F, in our case, with
the possibility of undergoing full dissociation,
singular molecular ionization, and up to fourth
monatomic ionization, we first assume there are
twenty-five possible chemical species, which are
C,F., CF,, CF,, CF,*, CF,;, CF;*, CF,, C,, CF,
CF*, F,, F;*, C2 (Z=-1,4), F* (Z=-1,4), and ¢ 's.
For a gas containing twenty-five chemical species,
which is composed of three elements (C, F, €), we
are required to have twenty-two (25-3=22)
independent chemical reaction equations (laws of
mass action). The reactions considered here are

CF,»CF + F 1)
CF»C+F (2)
F,~2F 3)



CF, » CF, + e~ 4)
CF = CF* +e" ®)
4
CilacC?+e | (6
Z=0
C,F, = 2CF, (7
F,=F, +e ®)
4
FilaFlies | (9
Z=0

C,F, = C,F, + F, (10)
C,F, » CF, + CF (11)
C,F, - CF, +C (12)

C, = 2C (13)

In actuality, there are other possible reactions that
could yield the same chemical species. But, for an
equilibrium calculation, the reactions chosen are
arbitrary as long as they are linearly independent and
account for all possible species.

Writing these reactions in terms of equilibrium
relations for the partial pressures, we have

K, (T) = Hp (14)

where the K ; are the equilibrium constants for the
reaction (j) at the equilibrium temperature T, in terms
of the partial pressures. Using the appropriate

formulations, they may also be put in terms of
concentrations, K., or number densities, K. It is
important to note in the above equations that the
equilibrium constants are written as functions of
temperature only, as most authors point out.
However, they may be functions of two or more state
variables depending on whether such things as
thermal non-equilibrium assumptions or electronic
partition function cutoff is taken into account.?

In addition to twelve independent equations
relating the twenty-five unknown partial pressures,
we need three more equations to solve for the gas
composition. The three chosen are; conservation of
nuclei, Dalton's Law, and charge neutrality. The
ideal thermal gas law for each species is written in
the form

p; = nkT, (15)

where

For charge neutrality, we have

25
Y Zn:=0 17)

i=1
In terms of partial pressures, this becomes ( for ideal

gases )

l.=1 i

= (1
ZZ(?)piz=0 18)

For conservation of nuclei, we write

1 1
(nczF‘)o = —2-( C)O = Z(nF)O (19)

where



and
25
(ng), = § Nn‘.FN (1)

where  (ngyre)o is  the total number of
tetrafluoroethylene  molecules available for
dissociation and ionization (ie. the number of C,F,
molecules present if the gas was non-reacting at some
initially low temperature). Dividing Eq. (20) by Eq.
(21) and utilizing Eq. (19) gives us the nuclei
conservation statement, where the number densities
are related to the partial pressures by Eq. (15).

CALCULATION OF THE EQUILIBRIUM
CONSTANT - PARTITION FUNCTIONS

To solve the system of equations, we only need
values for the equilibrium constants which may be
calculated from equilibrium statistical mechanics. In
terms of partition functions Q,, the law of mass action
for a general system is

S Q)
KD = [IN" = ¢ ¥ T Q"

or alternatively, substituting o; = N;/V we have

v, _ﬁ v
KD = IIn' = (%/) e 7 IT0/

(23)

where v, is the stoichiometric mole number for
species (i), that is, the coefficients in the balanced
chemical equation, Ae, is ‘the reaction energy
(change in zero-point enmergy) and Q; is the total
partition function for species (i). Thus, for a given
reaction and thermodynamic state, the only unknowns
in Eq. (23) are the Q;'s.

For a system in thermodynamic equilibrium, we
have

.€
N- =N (24)

which gives the number of particles N; in energy
level e; with g degenerate states. We define the
partition function, Q, as the sum in the denominator
of Eq. (24) which is, in general, a function of T and

- 25
Q=Y ge" @)

_ V. It is typical to express the total energy as the sum

of translational and internal energies. Note that Egs.
(23) and (24) contain only one temperature. For the
two temperature case considered in this research we
make the assumption that the heavy-particle gas
composed of neutrals and ions, has a Maxwellian
distribution in velocities and a Boltzman distribution
in energies at a heavy-particle temperature , T. The
electron gas, composed of both free and bound
electrons is in equilibrium with an electron
temperature T, defined by their Maxwellian velocity
distribution. Note that, in this analysis, we are
ignoring the interaction between electronic and
vibrational states. Thus, we have defined a two-
temperature LTE situation. For a molecule we have

e=¢__+¢_ +¢&, +c¢, (26

trans rot

and for an atom

e =g, + &, 27

trans

where £ is the sensible energy, measured above the
zero-point energy £,. Quantum mechanics gives us
theoretical values for the quantized energies of a
particle, at least for the translational, rotational, and
vibrational modes.® Along with the assertion that
particle energy is simply the sum of the modal
energies, that is, the internal energies are uncoupled,
which is a consequence of the more fundamental
assumption of a separable Hamiltonian, the partition
function is expressed as the product of the modal
partitions Q;, where

with j extending over all modes. Armed with the
quantized values for the modal energies, and the
associated degeneracies we can calculate the modal
partition functions which are given here in reduced
form, without proof as*



sz[m)g v 9

hZ
2
th - 81t IkT (30)
oh?
1
Qup = — 5 (31)
1-e *

where ¢ is a factor which arises from the symmetry
requirements of the wave function in the exchange of
an identical particle. It is equal to 1 for heteronuclear
molecules (ex. CF), and equal to 2 for homonuclear
molecules (ex. F,). For electronic energy there is no
closed form general expression for the quantized
energy levels. Thus the electronic partition function
must be left as an infinite series in the form

w -1
Q, - E g e kT (32)
j=0

Equation (32) is the true theoretical representation of
the electronic partition function for an isolated
particle. In theory there are in infinite number of
electronic levels extending from the ground state
energy (go = 0) to the ionization potential, which is
the amount of energy needed to remove an electron
from its ground state to infinity (bound-free
transition). The electronic partition function is a
diverging series because although the energy
approaches a finite limit, the degeneracy increases as
the square of the principal quantum number, so the
series diverges.® For any general polyatomic molecule
of N atoms, if we still assume a separable
Hamiltonian then we can factor the partition function
as in Eq. (28) with the product extending not only
over all fundamental modes but also over all modal
degrees of freedom.®

In actuality, the electronic series in not infinite
because a particle in the real world is never truly
isolated. Due to various interparticle interactions that
arise in any finite density medium, the series will
actually terminate at some principal quantum number,
n™", The evaluation of 0™ and its associated effect

of ionization potential lowering is the subject of some
controversy and was explored in detail in a previous
work.? Results from that work give the correct cutoff
criterion as

where A=Z.*¢?/2*IP. The lowered ionization
potential is given by

P -1p|1 - L

(34)
ncutoﬁ'

The K,'s are converted to K,'s using the relation

E“i Vi (35)
KD = 7T ) £ D

The required molecular and atomic data, which are
too numerous to give here, are taken from the works
of Chase,” Moore,®® Rosenstock,'® Herzberg,!!
Buckely,'? and Paulino and Squires. "

SOLUTION OF THE EQUILIBRIUM
EQUATIONS

The equations given in the previous section to
calculate the equilibrium composition in terms of
partial pressures, given T , T, and P, provide a
closed set of twenty-five coupled nonlinear algebraic
equations for which there is no analytic solution and
numerical methods must be used. The numerical
solution of systems of nonlinear equations is
universally very difficult and is a topic of current
research. As of yet, there are no appropriate
pumerical methods for solving coupled nonlinear
systems of algebraic equations from arbitrary starting
vectors.'* One of the most commonly used methods
and the one used previously for nitrogen research,? is
the Newton-Raphson method. The Newton-Raphson
method usually exhibits excellent convergence
qualities when the starting vector (initial guesses for
the roots) is near the actual root. For a homonuclear
diatomic gas a good initial guess can usually be
obtained through Saha-type statistical arguments using



weighted averages due to limited reactive
simultaneity. In this case though, since we are
dealing with a polyatomic heteronuclear gas, it was
initially assumed that we could not get close enough
to the root for Newton-Raphson to work properly.
Many hybrid techniques have been proposed but most
fail when the Jacobian becomes singular, or at
stationary point. ! The solution procedure initially
chosen for this research is the one proposed by
Powell."” Powell's technique exhibits almost
guaranteed convergence even for poor initial guesses.
It also has the ability to correctly handle stationary
points. The price of this behavior is that the
convergence is linear until very close to the root then
it converges quadratically like the standard Newton-
Raphson. Thus, the total number of iterations
required is greatly increased resulting in much longer

runtimes, up to 200 minutes per isobar on a Sun

Supersparc . Thus, it was decided that the Newton-
Raphson method would be used combined with a
raster processing iteration procedure.

Given T, T, and P, an initial equilibrium
composition is approximated using simple Saha-type
arguments assuming totally uncoupled physical
process, then partial pressures are backed out using
weighted approximations or the initial guess was set
equal to the previous converged root at the last
temperature and pressure and stepped up in
temperature on each isobar in small increments of
from 0.1 to 10 K for heavy particle temperatures and
1 K to 100 K for electron temperatures. The
completely closed system is solved at each point
using the Newton-Raphson procedure, which iterates
until the sum of the absolute values of the corrections
is less than the chosen tolerance of

epP
L,1) 69
T T,
where ¢ = 10* or until 20,000 iterations are

performed. Convergence to the tolerance is usually
obtained quickly. An additional convergence check is
performed after each completed iteration so that the
total isobaric deviation is not allowed to exceed 5%.
The correct composition is now known to within
desired accuracy. The mixture molecular is was
computed using the expression

25
MMG = Y x,mM,  G7)

i=1

where X; is the mole fraction of species i, obtained
using

. n,

x =0 (38)
N Ry

where n,, is, of course, just the total number of

particles.

RESULTS AND DISCUSSION

The chemical composition in terms of the mole
fractions at 1 atm. and T/T = 1.0 from 300 to
30,000 K is shown in Fig. 1. We see the same rapid
dissociation of C,F, as observed by Paulino and
Squires'? due to the inherent weakness of the carbon
double bond in this molecule. The results are
consistent with those obtained by Kovitya.'® Figure 2
shows a better view of the composition in the low
temperature region where molecules dominate. In our
case we see that at about 800 K C,F, partially
dissociates into C,F, and CF,, almost completely
recombines as temperature increases, then dissociates
into CF,. Dissociation of CF, begins to at about
4,000 K and is almost completely dissociated by
7,500 K. The primary dissociation products are C
and F which reach their maxima at about 7,500 K.
Past this temperature ionization begins to occur and
singly ionized C and F and electrons dominate the
composition. Second iomization begins to occur *
between 22,500 and 25,000 K. Figures 3 through 8
show representative species compositions of C, C*,
F, F*, ¢ and CF, at two different pressures, 1 atm
and .1 atm, for the case of thermal
nonequilibrium.They are given for four heavy
isotherms of .05, .1, 1, and 10 ev. Here we see
drastically different behavior due to the highly
energetic electrons at their elevated temperature.
Dissociation of CF, happens rapidly, other molecules
exhibited similar behavior. Single and multiple
ionization of C and F follows the expected pattern of
following the electron temperature, consistent with
our original formulation. Figure 7, the electron
partial pressure, shows we reach regions where
dP./dT, goes to zero. The composition is constant
after this for we had assumed that the maximum ionic
charge state was four. This suggests that for a correct
chemical model at elevated electron temperatures we
may need to extend the possible ionic species to a
greater charge value. The molecular ionic and
electronegative species were found to exist in only



very small amounts at all T./T values. In future work
it is planned to include multi-phase species in like
amorphous carbon. Molecular effects that are being
evaluated for inclusion in future models include
anharmonic vibrations and internal energy mode
coupling. Also research is being performed to
develop the complete reactive thermodynamic and
transport models.
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Figure 6. Partial Pressure of F* vs. Te.
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Figure 7. Partial Pressure of electrons vs. Te.
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ABSTRACT

The equilibrium chemical composition, thermodynamic, and transport properties of nitrogen is
calculated over a wide range of thermodynamic state conditions. Six chemical species are
included in the analysis. The equilibrium constants are calculated using the most recent
spectroscopic data available. Calculations are performed for pressures from 0.001 atm to 1,000.0
atm and for temperature ranges of 300 K to 30,000 K.

INTRODUCTION

Knowledge of the chemical, thermodynamic, and transport properties of a gas is required in
almost any gasdynamic analysis. Accurate thermochemical and transport properties become
particularly important in high-temperature applications such as the pulsed plasma thruster and
other high temperature devices. In this paper, we shall concentrate on calculating the equilibrium
composition, thermodynamic, and transport properties of a gas mixture, in this case nitrogen.

There are three primary thermochemical states possible for a gas. A calorically perfect gas has
specific heats that are constant, and the enthalpy and internal energy are only functions of
temperature. A thermally-perfect gas, in which variable vibrational and electronic excitation are
taken into account, has specific heats, enthalpy, and internal energy that are all functions of
temperature. If the conditions are right for chemical reactions to occur, then we can treat the gas
as an equilibrium chemically-reacting gas for which properties area all functions of temperature
and pressure. Even this can be generalized by stating that the reacting gas is in local
thermodynamic equilibrium (LTE). This means that a local Boltzmann distribution exists at each
point in the flow at the local temperature. Recent research, both in the areas of advanced
propulsion and high-temperature gas dynamics has demonstrated the need for accurate data on
the chemical, thermodynamic, and transport properties of such reacting gases. In this paper we
analyze the thermophysical properties of nitrogen with the inclusion of translational, rotational,

- vibrational, and electronic excitation.

POSSIBLE SPECIES, REACTIONS, AND
EQUILIBRIUM EQUATIONS

In this section, we calculate the chemical composition of nitrogen. The analysis includes
vibrational and electronic excitation, dissociation, first molecular ionization, and first through
second monatomic ionization. Throughout of the analysis, we assume a perfect gas, where




intermolecular forces are non-existent or negligible. This might seem a strange assumption when
the gas is in the plasma state due to the presence of Coulomb collisions, but it is a widely used
and accepted approximation.’

For a diatomic base gas, N, in our case, with the possibility of undergoing full dissociation,
singular molecular ionization, and up to second monatomic ionization, we first assume there are
six possible chemical species, which are N,, N,*, N* (z=0,2) , and e 's. For a gas containing
six chemical species, which is composed of two elements (N, €’), we are required to have four
(6-2=4) independent chemical reaction equations (laws of mass action). The reactions considered
here are

N, + € = 2N (1)
N, + e:‘::v2 =N, +e @)
N+ N+ e 3)
N + & N« e )

In actuality, there are other possible reactions that could yield the same chemical species. But,
for an equilibrium calculation, the reactions chosen are arbitrary as long as they are linearly
independent and account for all possible species.

Writing these reactions in terms of equilibrium relations for the partial pressures, we have

KD = 1/ ®)

where the K, ; are the equilibrium constants for the reaction (j) at the equilibrium temperature
T, in terms of the partial pressures. Using the appropriate formulations, they may also be put
in terms of concentrations, K., or number densities, K,.

In addition to four independent equations relating the six unknown partial pressures, we need
two more equations to solve for the gas composition. The two chosen are Dalton's Law and
charge neutrality. The ideal thermal gas law for each species is written in the form

p; = nkT (6)

where
p=Yp @)

For charge neutrality, we have
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i=1

In terms of partial pressures, this becomes ( for ideal gases )

6
Y Zp: -0 ©)
i=1

CALCULATION OF THE EQUILIBRIUM
CONSTANT - PARTITION FUNCTIONS

To solve the system of equations, we only need values for the equilibrium constants which
may be calculated from equilibrium statistical mechanics. In terms of partition functions Q;, the
law of mass action for a general system is

-Aeg,

KD = [IN' = ¢ 7 [ Q7

or alternatively, substituting n; = N;/V we have

a10)

-Ae,

k@ =TI - (3] e an

where v; is the stoichiometric mole number for species (i), that is, the coefficients in the
balanced chemical equation, Ae, is the reaction energy (change in zero-point energy) and Q; is
the total partition function for species (i). Thus, for a given reaction and thermodynamic state,
the only unknowns in Eq. (11) are the Q;'s.

For a system in thermodynamic equilibrium, we have

.
N = NS (12)

which gives the number of particles N;" in energy level ¢; with g; degenerate states. We define
the partition function, Q, as the sum in the denommator of Eq. (12) which is, in general, a

13
Q=Y ge R (13)

function of T and V. It is typical to express the total energy as the sum of translational and




internal energies. Note that, in this analysis, we are ignoring the interaction between electronic
and vibrational states. Thus, we have defined a one-temperature LTE situation. For a molecule
we have

€ = etrans + Srat + svib + 6el (14)

and for an atom

1s)

€ = srrans + Sel

where ¢ is the sensible énergy, measured above the zero-point energy €,. Quantum mechanics
gives us theoretical values for the quantized energies of a particle, at least for the translational,
rotational, and vibrational modes.? Along with the assumption that particle energy is simply the
sum of the modal energies, that is, the internal energies are uncoupled, which is a consequence
of the more fundamental assumption of a separable Hamiltonian, the partition function is
expressed as the product of the modal partitions Q;, where

e-TI¢ 19

with j extending over all modes. Armed with the quantized values for the modal energies, and
the associated degeneracies we can calculate the modal partition functions which are given here
in reduced form, without proof as’

3
Qm=(2u;kT)2 <V a7
2
er = 81'C IkT (18)
oh?
1
Qi = —5 (19)
1 e__"—T

where ¢ is a factor which arises from the symmetry requirements of the wave function in the
exchange of an identical particle. It is equal to 1 for heteronuclear molecules (ex. NO), and equal
to 2 for homonuclear molecules (ex. N,). For electronic energy there is no closed form general
expression for the quantized energy levels. Thus the electronic partition function must be left as
an infinite series in the form




0= %5e " @

Eq. (20) is the true theoretical representation of the electronic partition function for an isolared
particle. In theory there are in infinite number of electronic levels extending from the ground
state energy (g, = 0) to the ionization potential, which is the amount of energy needed to
remove an electron from its ground state to infinity (bound-free transition). The electronic
partition function is a diverging series because although the energy approaches a finite limit, the
degeneracy increases as the square of the principal quantum number, so the series diverges.*’

In actuality, the electronic series in not infinite because a particle in the real world is never
truly isolated. Due to various interparticle interactions that arise in any finite density medium,
the series will actually terminate at some principal quantum number, n™°%, The evaluation of
n®*T and its associated effect of ionization potential lowering is the subject of some controversy
and was explored in detail in a previous work.® Results from that work give the correct cutoff
criterion as

(21)
where =7 ,*¢*/2*IP. The lowered ionization potential is given by
P - IP[I - ] @2)
R outofy
The K,'s are converted to K,'s using the relation
K, (T) = ()™ K, (D) @3)

The required molecular and atomic data, which are too numerous to give here, are taken from
the works of Herzberg’ and Moore®.

SOLUTION OF THE EQUILIBRIUM
EQUATIONS

The equations given in the previous section to calculate the equilibrium composition in terms
of partial pressures, given T , T, and P, provide a closed set of six coupled nonlinear algebraic
equations for which there is no analytic solution and numerical methods must be used. The
numerical solution of systems of nonlinear equations is universally very difficult and is a topic
of current research. As of yet, there are no appropriate numerical methods for solving coupled
nonlinear systems of algebraic equations from arbitrary starting vectors.' One of the most




commonly used methods is the Newton-Raphson method. The Newton-Raphson method usually
exhibits excellent convergence qualities when the starting vector (initial guesses for the roots) is
near the actual root. For a homonuclear diatomic gas a good initial guess can usually be obtained
through Saha-type statistical arguments using weighted averages due to limited reactive
simultaneity. Another technique, known as Powell's technique exhibits almost guaranteed
convergence even for poor initial guesses.! It also has the ability to correctly handle stationary
points. The price of this behavior is that the convergence is linear until very close to the root
then it converges quadratically like the standard Newton-Raphson. Thus, the total number of
iterations required is greatly increased resulting in much longer runtimes. Thus, it was decided
that the Newton-Raphson method would be used combined with a raster processing iteration
procedure.

Given T and P, an initial equilibrium composition is approximated using simple Saha-type
arguments assuming totally uncoupled physical process, then partial pressures are backed out
using weighted approximations or the initial guess was set equal to the previous converged root
at the last temperature and pressure and stepped up in temperature on each isobar in small
increments of from 100 to 300 K for heavy particle temperatures. The completely closed system
is solved at each point using the Newton-Raphson procedure, which iterates until the sum of the
absolute values of the corrections is less than the chosen tolerance of

Y =eP e

where ¢ = 10* or until 20,000 iterations are performed. Convergence to the tolerance is usually
obtained quickly. An additional convergence check is performed after each completed iteration
so that the total isobaric deviation is not allowed to exceed 5S%. The correct composition is now
known to within desired accuracy. The mixture molecular is was computed using the expression

25
MMG =Y X, MM, (25)

i=1
" where X, is the mole fraction of species i, obtained using

X.Eni=

= (26)
n

il
ntot
where n,, is, of course, just the total number of particles.

- CALCULATION OF THE THERMODYNAMIC PROPERTIES

For a given temperature and pressure, the complete gas composition can be calculated using
the techniques in the previous section. Often, however, it is necessary to have the thermodynamic
propertied of the gas. In this research, the calculated thermodynamic properties are specific
enthalpy (h), specific internal energy (e), the specific heats (c, and c,), and consequently the ratio




of specific heats (y).

a. Calculation of the specific internal energy (e) and specific enthalpy (h)
On a microscopic scale, a particle (atom or molecule) may possess energy due to its
translational, rotational, vibrational, and electronic modes. This is expressed as

trans 'rot .vib el (27)

where e is the total specific internal energy. Note that e is actually the total specific sensible
internal energy and is measured above the zero point. In terms of partition functions the energy
and enthalpy is expressed as’

e = RTQ(M) 28)
oT ),
h = RT + R#(M) (29)
oT |,
with the relation
h=e + Pv (30)

holding for any type of gas, whether calorically perfect, thermally perfect, or chemically
reacting. The expressions for the modal partition functions are given in the previous section.
Taking the derivatives of the logarithms and using Eq.(28) we get

e = 3RT 31)
2
eirot - R,.T (32)
and
vivp BV, 1

G = kT( v, )R"T (33)
1




Again, for the electronic energy, the lack of a closed form partition function leaves us with

dln Qiel
oT

(34)

e = RT?

i 1

v

where R; = Rygc/MM,; is the specific gas constant. The translational and rotational modes are
assumed to be fully excited.
For a mixture of N species, the total mixture sensible internal energy is

N
e =) ce, (35)
in1

where c; is the mass fraction of species i, given by
¢ - x MM, P MM, (36)
! ‘MMG P MMG

Similarly, the specific enthalpy for a mixture of N species is given by

N
k=Y ch, G7
i=1
h=e + RT + (AR) (38)

where again, c; is the mass fraction and h; is the specific enthalpy for species i. The internal
energy at each required temperature and pressure is calculated using Eqs. (31)-(34) combined
with Egs. (35) and (36).The solution procedure required a previous call to the equilibrium
composition subroutine to input the partial pressures and mixture molecular mass. The electronic
derivatives appearing in Eqs. (31) through (34) are calculated using a 4®-order four-point
Richardson extrapolation with AT = .01K. The derivatives are taken with a frozen principal
quantum number cutoff. This was done for ease of calculation and to avoid the problem other
authors*’ experienced with large computational derivatives being obtained if the temperature and
pressure state corresponded to a partition function jump due to the addition or subtraction of
another electronic level. The specific enthalpy is not computed using Eq.(37) , rather Eq.(30)
is used written in the form




RyceT
h=e+Pv=e+ —=2_ (39)
MMG

because both e and MMG are now known and it is a rather simple, yet completely applicable
relation.

b. Computation of Specific Heats
The specific heat at constant pressure is defined as

oh
oy i 40
“ (aT]p “0)

From Eq.(37) we have h = ZIch;, putting this into the above
we get

c, = (22) = (T ek, - 2c,.(?’;z)p N Eh,.(_a_Ti)p @

The mass fractions are input to the thermodynamic subroutine, thus are known. The (ch;/dT),
for each species is calculated using Eq.(38) together with the appropriate modal energy
derivatives from Egs. (31)-(34). The first and second electronic derivatives were taken using 4-
point fourth-order Richardson Extrapolation'' using T=.01K for h. They were again taken
assuming a frozen principal quantum number cutoff through the derivative steps. The absolute
specific enthalpy, h;, for each species is calculated using Eq.(38) , and the energies previously
calculated. The composition derivatives (dc;/dT), are evaluated numerically using Eq.(36). For
each of the four terms, a call to the equilibrium composition subroutine is made at the
appropriate temperature (T+AT, T+AT/2, T-AT/2, T-AT) keeping pressure constant. The step
length for the temperature is AT = .01K.

The specific heat at constant volume is defined as

de
=== 42
“ (%), @

From Eq.(35) we have e = Xcg;, putting this into the above
we get

a a aei ac,.
R R T R
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oc

de; .
= — + ) 44

Unfortunately, this cannot be easily evaluated for the following reason. The state variables the
appear in the specific energy and especially in the calculation of the equilibrium composition are
pressure and temperature. A partial derivative can be taken easily with respect to temperature or
pressure because we have the ability to directly hold the other constant. But here, we are
required to take derivatives with respect to temperature, holding volume v (specific volume)
constant. Since pressure and temperature are our chosen state variables, there is no direct way
to do this. Authors such as Drellishack®’, Peng'?, and Penski'® use a complex method involving
partial derivatives of compressibility, energy, and enthalpy in Jacobian-like form. But since in
this research the gas was treated as perfect, or at most weakly imperfect, an easier and more
fundamental method of obtaining c, is found.

The general relation'
¢, -c, =|[2¢] +p|[2 (45)
4 av), aT),

is applicable to all gases, weather calorically perfect, thermally perfect, ideal or non-ideal, and
even chemically reacting. We want to transform (de/dv); in to something easier to calculate. If
e=e(v,T) and e=e(P,T) then it can be shown that

1*2?% 1 (oMMG) 1
‘oP) \MMG\ ov |, v

cv=cP—P

oT

(_a_z) (46)
P

Which, although looks complicated is actually a much easier method given the present situation
of T and P as state variables. c, is known, as are the ¢;'s, MMG, and specific volume (from v
= 1/p = Ryec*T/P*MMGQG) because the composition is already known and the internal energies
have already been calculated from the previous section. The composition derivative (dc;/0P)r is
evaluated by a 4-point fourth-order Richardson Extrapolation with AP=.01 N/m* = h. The
specific volume derivative (dv;/dT), is evaluated using the same technique by evaluating the
molecular mass at the four Richardson step points variant on T by

) _Reec o( T @7
aT), P OT\MMG),




with AT = .01K. The derivative (3MMG,/dv) requires the use of an iterative technique. First
Av is calculated at each T and P as Av=.01*v,. Then at each Richardson point, a v'* is
calculated and a variable P** is guessed as

(48)

The equilibrium composition subroutine is called using P=P*" and T=T. A new value of v,
called v*“ is obtained by

e _ RygeT

- _Ruoel 49
P™ MMG

vca

If the absolute value of the difference v<2-v™ is not less than 10 and the maximum number of

iterations has not been reached (in this case 150), then the pressure is updated to

cale _ y'ed RU cC T (50)
y cake vale MMG

Piter = Piter + \4

and the iteration process continues. Convergence to required accuracy is usually obtained to from
within 10-40 iterations. There are some convergence problems at low pressures (P=.001 atm)
and high temperatures (T >25,000 K), but that was rare. Once convergence is achieved the
calculated molecular mass was set to the appropriate numerical derivative term. The specific heat
¢, was then calculated using Eq. (46).
The ratio of specific heats (y) is then calculated by
y = 2P (51)
c

v

which is also its definition.

CALCULATION OF THE TRANSPORT COEFFICIENTS

In high-temperature flows, the onset of excited internal energy modes, and especially chemical
reactions such as dissociation and ionization, may have a profound effect on the way a gas
transports its mass, momentum, and energy. The microscopic molecular transport of mass,
momentum, and energy, arising from macroscopic nonequilibrium in composition, flow velocity,
and temperature, give rise to the macroscopic phenomena of diffusion, viscosity, and heat
conduction, respectively®. In this research, the transport coefficients of viscosity (¢) and thermal




conductivity (k) are calculated using the most recent methods and data available. The viscosity
and thermal conductivity are calculated including the possibility of molecular dissociation, first
atomic ionization, and second atomic ionization. The internal energy modes of translation,
rotation, vibration, and electronic excitation are included when possible and applicable.
Knowledge of the unique equilibrium chemical composition and of the equilibrium
thermodynamic properties are required for the calculation of the transport coefficients and are
obtained from methods described in the previous sections.

A diatomic base gas, in this case N,, with the inclusion of possible dissociation, molecular first
ionization, first atomic ionization, and second atomic ionization gives six possible chemical
species, namely N,, N,*, N, N*, N**, and e. These species give rise to twenty-one possible
independent binary interactions, which in this case are illustrated as x's and o's in table 1. Due
to the lack of available collision cross section data, and due to the complexity of a large
multicomponent gas transport calculation, some binary interactions and chemical species
exclusions are made. All interactions involving the molecular ion (N,,) are ignored. This reduces
the system to a five component transport model. The exclusion of N,* is based on the fact that
it is at all times a minor species and has negligible effects on the transport properties. The low
concentration is evident from the previous equilibrium composition calculations. Peng'? and
Penski'® made the same assumption. Capitelli and Devoto'® made a similar assertion but not the
same assumption, and instead used crude estimated instead of absolute exclusions. Also, the
interactions involving No-N*, N,-N** and N-N** were ignored because of the low probability
that any of these species will co-exist to any significant degree, as evident from the composition
calculations. Similar assumptions are made in the works of Peng,' Penski,' and Capitelli.
These assumptions now leave us with the twelve possible binary interactions

N, N N Nt N ¢
N, 0 X o X X 0
N,* X X X X X
N o 0 X o
N+ 0 0 0
N*+ o 0
3 0

Table 1. Nitrogen interaction model.

for the transport calculations, as indicated by an o in table 1. Although the e-N, interaction is
a minor interaction, it is included because data was available.

a. Calculation of the Viscosity

The exact kinetic representation for the viscosity of a multicomponent gas is given by
Hirshfelder's as S
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X; J2X.X, MMMM, 5 MM,
H, =ty = ! + (53)
By k=1 By (MMi + I‘ﬂ‘lk)2 3A:k MM,-
kei
and
2X.X. MM.MM.
ey =TT — > 1 (54)
Y ey (MM, MM |34
In the above formulas y; is the viscosity of a pure substance, given by
MM, T
py = C——— (55)
U?i Qg,Z)
and p; is the binary gas viscosity, given by
MM _MM.T
By = C\J i 1 . (6)
(MM, MM)) 52 g2

Also, in the above formulas, X;'s are the mole fractions given by Eq.(26), MM, are the
molecular masses, and A;" is the dimensionless ratio of collision integrals, expressed as
22"
* Qlj

i

(57)

{Ly”

The Q,;""'s are the dimensionless collision integrals
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where (1,s) = (1,1) corresponds to the diffusion integral and (l,s) = (2,2) corresponds to the
viscosity and thermal conductivity integral. They have the physical significance of being the
deviation of any particular model from an idealized hard sphere model. The o;'s are the collision
diameter. And C is a constant equal to 8.4422x10% when working in MKS units. The only
difference between the averaged collision (transport) cross section and the ¢>Q%" is a numencal
constant equal to w ( Q9" = Q/x ).10V

Calculating the viscosity using Eq.(52) is still rather complicated and has proven to be
unnecessary.'® Instead, Eq.(52) can be replaced by its equivalent infinite series representation,
which is'

" XXH, '
M= i ZE J'J+...,~... (59)

i' Ji

,e

Armaly and Sutton'® have shown that the diagonal elements of matrix H;; are much larger than
the off diagonal elements, so much so, that the off diagonal elements of H;; can be neglected.
This leaves the much simpler expression for the multicomponent viscosity as

u—Z—— (60)

ll

This is modified by canceling an X;, such that

b=y (61)

where
X, & 2X, MMMM,
Hi; k=1 M (MMi + i‘ﬂ‘lk)2

ki

MM
5 N k] 62)

34, MM;

Although the previous simplification seems trivial, it as actually quit computationally valuable.
Canceling out the X; from each term leaves H;"'s second term, the summation, not dependant
on X;. This helps reduce the number of 0/0 composition possibilities in a general purpose




computational calculation.

The multicomponent viscosity of the gas is then calculated using Eqs. (61) and (62). The
composition is assumed to be known. The data for the collision integrals is sparse, but every
attempt was made to find the most recent ¢?Q%-D" and o*Q*?" for every reaction. When one or
the other was unavailable approximations had to be made. Armally and Sutton'®*, Flori and
Biolsi*, and Freeman and Oliver,” have all shown that the ratio A;" is only a rather weak
function of temperature. Its magnitude is essentially governed by the general type of interacting
particles. Armally'® gives the general guidelines that A;"=1.25 for all interactions with the
exception of atom interactions with its own ion. In that case the following values are
recommended: A; =0.18 for H-H*, A;"=0.025 for He-He*, A;"=1.10 for C-C*, and for all
other homonuclear atom-atomic ion interactions the value of A;" for C-C* should be used.
Freeman and Oliver”? have also shown that although A;" is a relatively weak function of
temperature, its temperature dependance increases the greater the pressure. Thus, because of the
pressure range used on this research, the assumption of constant A;" was only used when
absolutely necessary, in this case to get 0’Q%?" for the €™-N interaction and ¢*Q%?" for the e-N,
interaction. An interesting point is that if A; is set equal to 5/3 in all expressions, then what's
left is the mixture rule proposed by Wilke. Wilke's viscosity mixture rule has been proven to fail
drastically for any significant degree of ionization.!*!* This happens for the apparent reason that
Ay is never close to the value 5/3 for ion-ion ar atom-ion interactions. The calculation of the
interactions with charged particles were made using the screened coulomb potential.? The debye
length is taken as the characteristic dimension for coulomb transport ( >Q®9* = A,20%9" ) which
in this research is calculated as®

1
- €okT 2 (63)

2
n,-e

D

in MKS units. The coulomb cross sections were calculated only if the degree of ionization was
greater than 108, If not, the cross sections were set equal to a constant 10°m?, This reduced the
effect of having large, physically incorrect values of A, at low degrees of ionization. Although
calculations were done at rather extreme temperature and pressure conditions, quantum effects
on the cross sections were ignored.?*?¢ The interpolated values of the collision integrals at all
required points are obtained using a cubic-spline interpolation technique. The calculations for
both the viscosity and the collision integral interpolation procedure are done in Fortran.

b. Calculation of the Thermal Conductivity

The thermal conductivity (k) for the reacting mixture is the sum of three components, which
are translational, internal, and reactive. The basic translational relation for the thermal
conductivity is the familiar Euken's relation

ke = 2 64

Anderson® and Vincentti & Kruger® give a modified Euken relation to take into account internal




energy modes by stating that, in general,

k = ktrens kinternal (65)
where
f internal _ }Lvamal - l"'(cvrot + vaib . Cvd) (66)
thus
k =p.(§—c:m” rel el . c:l) (67)

Also, for a chemically reacting gas , there is additional energy transport due to diffusion, thus
giving as additional component to the thermal conductivity, called the reactive thermal
conductivity (k;). Since the gas under consideration is homonuclear with limited reaction
simultaneity, the reactive component of the thermal conductivity is expressed as'?’

2
noaf R[T aanp)
reactions aT
ko= Y — (68)
= v
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where Dj; is the binary diffusion coefficient given by"
3
2 MM, + MM,
D, - 84144x10% T i’ (69)
oizj QS'D P 2MM .MM,
Thus the governing equation for the thermal conductivity is now
k =p(—§- e v el v o) cf’) + k, (70)

where k; is given by Eq.(68).

For a practical evaluation of k, Eq.(70) needs to be modified further. Recall from Section 2
that c, is a rather tricky quantity to get. The calculation of c, is not accomplished through modal
contributions (c,"™*, ¢, etc.), but instead calculated as a whole from chemical thermodynamic




relations and knowledge of c, using Eq.(46). Thus, there is no general was of obtaining the
specific modal contributions and Eq. (70) must be modified as to use the total c,. From Eq.(64),

we have
trans 2 kT
CV = ——
5 p
the total c, is
_ frans rot vib el _ trans internal
c,=¢, +c¢, +¢, +c¢, =¢, +¢,

k =p.(%c:""“ +c, - c‘f'“"s) +k, = p(cv + %c:'w) + k,

Upon simplification of Eq.(73) and using Eq.(64) again we are left with

k= %k"‘"’s + pc, + k

(1)

(72)

(73)

(74)

where ¢, is now the total gas c¢,. The middle quantity is an equivalent internal thermal

conductivity. And k, is given by Eq.(68).

The translational component of the thermal conductivity, k™, appearing in Eq.(74) is obtained
from kinetic theory. The translational component of the multicomponent thermal conductivity can

be expressed as?®16-2!

L; X
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(75)

- MM + ZMM; + 4MM,MM,A;, | (76)
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where X; is the mole fraction of the i component, A;" is the dimensionless ration of collision
integrals given by Eq.(57), k;®" is the thermal conductivity of a pure gas, and k™" is the
thermal conductivity of a binary gas. The pure gas thermal conductivity is given as

gres oo | L1 (78)
MM 9(2»2)

and the binary gas thermal conductivity ,k;, is given by

s _ C\J TMM, + MM) 1 (79)
2MM, MM, 2 gen

where C is a constant equal to 2.6335x10% on MKS units. The Q;%?" are the dimensionless
viscosity and thermal conductivity integrals. And o is the collision dlameter The usage, theory,
and equivalence to the familiar cross sections were explained in the previous section.

As with the viscosity calculation (refer so Sect. 2) the expression for k* given by Eq.(75) is
simplified by first expanding it in its series representation as®

2 n
k"""":—4n§i+4 EXXL”
in1 Ly i=1J=1 i.‘L”
]#

Foee— (80)

where is has been shown that the off diagonal elements L; are much smaller than the diagonal
elements. Thus a very good approximation for the multicomponent translational thermal
conductivity is

g - 4 3Lf_ (81)
i=1

and, upon reducing Eq.(81) for the same reason as done with viscosity, we are left with




ke = -4y L (82)
i=1 Li;
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The multicomponent total thermal conductivity is then calculated using Eq.s(), (), and (). The
viscosity (), the specific heat at constant volume (c,), the equilibrium composition, and the
collision integral data are assumed known (calculated previously).

RESULTS AND DISCUSSION

The electronic partition function and the cutoff principal quantum numbers for atomic nitrogen
are shown in Figs. 1 and 2, respectively. Here we see that due to the cutoff criterion of the
electronic partition function, a function which is dependant on both density and degree of
ionization, the electronic partition function is now a function of two state variables, namely
pressure and temperature. The cutoff principal quantum number and the partition function both
increase with increasing temperature and decrease with increasing pressure. This general behavior
is present for all other species, which due to brevity are not shown. The degree of ionization,
shown in Fig. 3 illustrates that increasing pressure retards ionization. This trend is also observed
for the degree of dissociation pictured in Fig. 4. The total mixture thermal conductivity is
displayed in Fig. 5. We see that highly non-monotonic variation occur in reactive regions where
the reactive component of the thermal conductivity dominates. Beyond the dissociation region,
although there is some contribution due to ionization reactions, the translational component
dominates. The mixture viscosity, pictured in Fig. 6, shows that the viscosity increases with
temperature, independent of pressure, until reaction occur in the gas. The changes that arise in
the presence of chemical reactions are due to changes in the mixture molecular mass or in the
average collision cross sections. The large increases that result in the maxima are due to the
dissociation of N,. The decrease that follow these maxima are due to the increasing amount of
ionization in the mixture. This is caused by the charged particle interactions which have large
coulomb cross sections. The specific heats, given in Figs. 7 and 8, are strong functions of
temperature, especially at low pressures where the composition changes generally happen more
rapidly and the dc/dT terms dominate. The ratio of specific heats is shown in Fig. 9. It starts
at low temperatures at the expected value of 1.4 ( for a diatomic gas with translation and rotation
excited ). As the temperature increases we observe a non-pressure-sensitive rise due to increasing
vibration excitation. As chemical reaction occur, large non-monotonic variations occur for the
same reasons explained earlier for the specific heats. Figures 10 and 11 show that the enthalpy
and internal energy both increase with temperature and increase and pressure decreases in
reactive regions primarily due to the changes in molecular mass. Figure 12 clearly indicates that




the Prandtl number is nowhere near constant, especially at high temperatures, as some frequently
assume ( with as assumed constant value of 0.75 ). There is a massive decrease with dissociation
that can cause it to vary by a factor of almost ten.
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Figure 2. Cutoff principal quantum numbers for N.
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APPENDIX V

Use of an Adaptive Grid to Model Thermal Diffusion in Problems
with Severely Non-Monotonic Transport Properties



USE OF AN ADAPTIVE GRID TO MODEL THERMAL DIFFUSION IN PROBLEMS
WITH SEVERELY NON-MONOTONIC TRANSPORT PROPERTIES

C. S. Schmaht!, P. J. Turchi.?, R. E. Peterkin®

Abstract

Modeling of thermal diffusion in problems where the thermal conductivity is a severely
non-monotonic function of temperature is studied numerically. The thermal conductivity of a
partially-ionized, molecular gas, including transport due to variations in chemical state, exhibits
non-monotonic variations by factors of three to five in the temperature range from 1000 - 20,000
K. This range corresponds to conditions near surfaces in both internal and external high-speed
flows, and in various devices for material processing. A detailed study of the effects of numerical
gridding on the accuracy of the solution of the thermal diffusion equation is performed with
MACH?2, a 2-1/2 dimensional, time dependent, arbitrary Lagrangian-Eulerian (ALE) adaptive-
grid magnetohydrodynamic (MHD) code. Data from an advanced reactive thermal-conductivity
model for nitrogen is provided in tabular form. An adaptive mesh based on variations in the
thermal conductivity, rather than the temperature or temperature gradient, allows increased
accuracy of calculations with a smaller number of computational cells. Comparisons with uniform
gridding indicate that, when such an adaptive mesh is used with the severely non-monotonic
transport coefficient provided by the advanced thermal-conductivity model, differences in thermal
flux can exceed 100%, especially at early times.
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Introduction

In several categories of aerospace and industrial systems, partially-dissociated, partially-
ionized gases are in contact with solid surfaces. These systems include hypersonic flight vehicles,
plasma thrusters, and arc furnaces. The equation-of-state of such a gas is quite complex and
results in transport coefficients for thermal conduction and viscous flow that can be severely non-
monotonic functions of temperature and pressure. Solution of problems of considerable
engineering significance, such as heat transfer to ablating surfaces, depend on accurately
modeling transport across regions that span a temperature range from 1,000 - 20,000 K. Over
this range, calculations for even relatively simple molecular gases, such as nitrogen, indicate non-
monotonic variations of thermal conductivity by factors of three to five. Numerical modeling is
essential in order to analyze heat transfer under these circumstances. The question of accuracy
and efficiency in performing such modeling is the subject of this paper. Two points of interest
are examined: 1) the relation of the calculational grid to the physical properties of the problem,
and 2) the use of adaptive gridding based on the thermal conductivity, rather than the
temperature or temperature gradient, in order to capture the effects of variation in transport
properties with temperature and density.

Example of Thermal Conductivity Variation

The equilibrium chemical composition, thermodynamic, and transport properties for
nitrogen have been calculated’. Six possible species are included: N,, N,*, N, N*, N** and ..
The calculations are performed with the inclusion of molecular dissociation and vibrational
excitation, single molecular ionization, both single and double atomic ionization. Single
electronic excitation is included with a variable electronic partition-function cutoff for atomic
species (based on distance between neighboring perturbations to the potential function of an
isolated atom or ion). The thermodynamic state ranges for the calculations are: 300 K < T <
30,000 K and 102 atm < p < 10° atm.

Figure 1 displays that the thermal conductivity of the mixture can exhibit highly non-
monotonic variations, especially in state regions where chemical reactions are dominant. For use
with MACH2, a 2-1/2 dimensional ALE MHD code?, the chemical thermodynamic and
transport data is provided in the format of SESAME tables®.

Numerical Modeling of Unsteady Heat Transfer

It is necessary to choose the time step for numerical integration according to proper
characteristic times based on both the temporal behavior of the boundary conditions and the cell
size needed to capture the spatial dependence of the solution. In general, with the thermal
diffusivity defined as




K = _k 6))
pPC,
the characteristic length for unsteady thermal diffusion scales as
x, = JKt 2)

c [4

where ¢ is the characteristic time scale for the boundary condition, such as the rise time of a
sinusoidal pulse or the elapsed time from the impulsive application of a constant temperature or
heat flux.

To capture the distribution of temperature within the medium, the cell size must, of
course,be much smaller than this characteristic length scale:

dx = f.x, 3)

where f, < < 1.

The computational time step, at least for explicit calculations, must be much less that the
characteristic time for diffusion across the cell-size:

_ ¢ Bx) 4
atftK )

where f, < < 1. Thus, the time step is related to the characteristic time of the problem by two
factors, f, and f,, such that:

5t = f,(fx)ztc )

Note that for impulsive application of boundary conditions, for which t, equals the elapsed time,
numerical calculation will always be inaccurate at very early times. Also the number of cycles
required to complete computation of a problem of duration t, is

1 :
N = ‘ )
AIAS

For f,;=f,= 0.1, N = 1000 cycles. This is overcome by the use of an implicit scheme.




In computations presented here, in which the cell size is changing throughout the computation,
the maximum time step allowed is chosen to be equal to the characteristic time step to minimize
the influence of errors that might otherwise result from improperly chosen time steps for the
smallest cell, with f,=1.

One-Dimensional Thermal Flux on a Uniform Grid

Computations were performed for three values of evenly-spaced cells (n = 64, 32, and
16), respectively, Figure A displays the temperature profile for unsteady, one-dimensional, heat
transfer between two surfaces impulsively imposed across a medium initially at a uniform
temperature (equal to the average value of the two surfaces) with a constant thermal conductivity.
Figure B compares the error in calculations of temperature as a function of time between the
surfaces, at several times, in terms of the differences between local values of temperature (for
n = 64, 32, and 16, respectively) and the local value obtained analytically*. This error is
normalized by the mean value and given as a cell averaged quantity across the grid. This is
calculated as:

i=1

Tonat = Teael* 100 (7)

<

Accuracy at early times improves as the cell size becomes smaller compared to the characteristic
length for diffusion. Smaller cell size, however, within the strict requirement of Eqn. 4, requires
a larger number of computational cycles. This requirement is certainly ameliorated by the use
of implicit solution of the difference equations, but at the potential loss of accuracy even within
stable, converged solutions. The use of nonuniform cell size permits a reduction in the total
number of calculations and memory requirements, if the reduced number of cells can be
concentrated in regions where important variations are occurring.

Adaptive Griddin

The benefit of using a calculational grid with variable resolution is well established.
Often, the grid will be determined by the shape of flow boundaries and by the distribution of
flow functions such as mass density. Figures 4 and 5 display the percent differences in flux of
the solutions for a unsteady heat transfer problem using the tabular conductivity with a grid that
is concentrated in regions of highest temperature gradient to that of an ordinary fixed grid. This
is done for 16 and 32 cells, respectively.

Here we see that the largest differences happen at earlier times, especially near the domain mid-
range, and decrease as time continues. Larger differences appear in the 32 cell case. The




magnitudes being approximately double that of the 16 cell simulation.

Grid Based on Thermal Conductivity

The code has the capability to adapt the grid according to the magnitude of the thermal
conductivity and, separately or in combination, to gradients in the thermal conductivity. The
decision to have the ability to adapt the grid on either magnitudes or gradients is based on the
assumption that both may be important depending on the physical situation or the transport
model.

The specific amount of adaptation provided be each control is determined by the following
procedure. This is accomplished by continuously adjusting the grid to the squares of the
logarithmic derivatives, accumulated of course, throughout the spatial and temporal coordinates.
The exact sensitivity of the calculational grid is defined by user defined input parameters which
modify the code internal adaptive weight function accordingly.

The ability to adapt according to the thermal conductivity in this manner has four major
features. Enough cells are placed in regions where large amounts of thermal diffusion are
important. The true maxima/minima of conductivity are captured in descretized space when
dealing with highly non-monotonic transport model, thus minimizing the risk of missing
important values by approximations in using the tabular data. The thermal conductivity is a
function of both pressure and temperature, so the grid directly adapts on one function instead of
two, thus minimizing computational work. Finally, the exact correlation of the transport model
with flow structure can be delineated.

To test the adaptive-gridding scheme, the unsteady, two-wall heat transfer problem is
again considered. As pictured in Fig 2, the left wall is at 1.0 ev, the right at 0.5 Ev, and the gas
is initially at a uniform temperature of 0.75 Ev. Before using the more complex tabular model
(for Fig. 1), it is useful to employ a generic ersatz, analytical model for a severely non-
monotonic variation in thermal conductivity. A sinusoidal form is chosen for this task. To test

the adaptive grid algorithm, we impose a sinusoidally-varying thermal diffusivity on the interval
{0,1]:

K(x) = K,[ 1+ bsin(2nmx) ] ®)

ForK, = 0.25m*/ s, b = 0.5, and n = 4, the resulting conductivity profile is illustrated in
Figure 3.




Twelve different runs were performed utilizing the sinusoidal thermal-conductivity model
given by Eqn. 6, under four different adaptivity conditions. Three runs using a plain non-
adaptive grid were performed as baseline computations using 64, 32, ad 16 cells, respectively.
The results of the 64 cell run are shown in Fig. 8. The results of the 32 and 16 cell runs
exhibited similar behavior. The 64 cell grid simulation using the adaptive grid based on thermal
conductivity magnitude is shown in Fig 9. The grid density for this case is shown in Fig. 10.

Figures 11 and 12 show the percent difference for the sinusoidal conductivity model
between the uniform grid and the grid adapting to the magnitude for the 16 and 32 cell cases,
respectively. The difference being defined as:

E(x,.t,) = Quliold) - Uxot) 10 )

Q/(x,.t,)

where Qf(xa,ta) is the interpolated value of flux from the fixed grid simulation at each adaptive
grid point. (This interpolation procedure is performed using a multi-dimensional cubic spline
interpolation ). The differences indicated are very small except in the mid-range where a rather
large variation occurs. For the 32 and 16 cell cases, much larger errors exist near the middle
reaching consistent maxima of approximately 78% for the 32 cell case and 66% for the 16 cell
case. Note the small deviation even at late times for both of these cases.

Calculations with the true non-monotonic conductivity model of Fig. 1, under the same
general parameters as the simulations with the idealized, sinusoidal form, yield similar results.
Figure 13 shows the flux distribution with no adaptivity. Figure 14 shows the resultant flux
distribution with full adaptivity. The percent difference between the fixed grid and fully adaptive
grid for 64 cells is shown in Fig. 15. We see that the differences present in the tabulated runs
are generally much greater that present in the sinusoidal model. Figure 15 shows a rather large
maxima in the mid-range with a maximum of approximately 28 %. Note that the left wall maxima
is still present in this case along with the 32 and 16 cell cases shown in Figs. 16 and 17. Figures
18 through 20 show the grid densities for these three cases.

Concluding Remarks

Calculation of a multi-component, chemically-reacting transport model for nitrogen
revealed that in certain state regimes the thermal conductivity exhibits highly non-monotonic
behavior'. This prompted the modification of the MACH2 computer code to adapt the
computational grid to the magnitude and gradient of the thermal conductivity and the gradient
of the thermal conductivity. As time progresses, such an adaptive grid increases the accuracy of
the solution by concentrating the grid in the appropriate regions to capture severe variations in
thermal conductivity. This adaptation also helps to stabilize the numerical solution at boundaries
with impulsive initial conditions. The largest percentage differences between results with the




new gridding scheme and uniform gridding occur at early times, but errors persist even at late
times in the calculations.

In addition to avoiding significant errors in calculation of heat flux (in excess of 70% in
some instances), the use of a gridding scheme that follows the behavior of the thermal-
conductivity will be important in attempts to understand the structure of nonuniform regions
between relatively cold boundaries and high temperature, molecular flows. Aerospace problems,
including heat transfer and ionization in hypersonic boundary-layers, and the current distribution
in ablation-fed plasma thrusters, will certainly depend on accurate modeling of transport
properties, but also require that numerical computations capture the complexity of such modeling.
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ABSTRACT

The chemical composition and thermodynamic properties of tetrafluoroethylene (C,F,) is
calculated with a two-temperature LTE formulation. Twenty-five chemical species are included
in the analysis. The equilibrium constants are calculated using the most recent spectroscopic data
available. Calculations are performed for pressures from 0.001 atm to 1.0 atm and for
temperature ranges of 0.05 ev to 5 ev for both heavy particle and electron temperatures.

INTRODUCTION

Knowledge of the chemical, thermodynamic, and transport properties of a gas is required in
almost any gasdynamic analysis. Accurate thermochemical and transport properties become
particularly important in high-temperature applications such as the pulsed plasma thruster. In this
paper, we shall concentrate on calculating the equilibrium composition of a gas mixture. This
is the necessary first step for determining the thermodynamic and transport properties of a gas.

There are three primary thermochemical states possible for a gas. A calorically perfect gas has
specific heats that are constant, and the enthalpy and internal energy are only functions of
temperature. A thermally-perfect gas, in which variable vibrational and electronic excitation are
taken into account, has specific heats, enthalpy, and internal energy that are all functions of
temperature. If the conditions are right for chemical reactions to occur, then we can treat the gas
as an equilibrium chemically-reacting gas for which properties area all functions of temperature
and pressure. Even this can be generalized by stating that the reacting gas is in local
thermodynamic equilibrium (LTE). This means that a local Boltzmann distribution exists at each
point in the flow at the local temperature. We will extend this statement further for the case of
a two temperature LTE gas modeled here. In this paper we calculate the chemical composition
of gaseous Teflon.

Very little information exists on the thermochemical properties of PTFE and its chemical
constituents, especially in the plasma state. This is unfortunate for high-temperature
thermochemical and transport data is needed for such devices as pulsed plasma thrusters'?,
ablative re-entry heat shields, electronic components (such' as capacitors), plasma etching
systems, and upper atmosphere modeling. Nonequilibrium properties are particularly important
when studying electric discharges near Teflon surfaces and other nonequilibrium flows.




POSSIBLE SPECIES, REACTIONS, AND
EQUILIBRIUM EQUATIONS

In this paper, we calculate the chemical composition of tetrafluoroethylene (C,F,). The analysis
will include vibrational and electronic excitation, dissociation, first molecular ionization, and first
through fourth monatomic ionization. Throughout of the analysis, we shall assume a perfect gas,
where intermolecular forces are non-existent or negligible. This might seem a strange assumption
when the gas is in the plasma state due to the presence of Coulomb collisions, but it is a widely
used and accepted approximation.?

For a polyatomic base gas, C,F, in our case, with the possibility of undergoing full
dissociation, singular molecular ionization, and up to fourth monatomic ionization, we first
assume there are twenty-five possible chemical species, which are C,F,, C,F,, CF,, CF,*, CF,,
CE;*, CF,, C,, CF, CF*, F,, F,*, C% (Z=-1,4), F* (Z=-1,4), and ¢ 's. For a gas containing
twenty-five chemical species, which is composed of three elements (C, F, €), we are required
to have twenty-two (25-3=22) independent chemical reaction equations (laws of mass action).
The reactions considered here are

CF,«CF + F (1)
CF«C+F 2)
F, =2F (3)
CF, = CF, + e" C)
CF « CF* + ¢” (5)

4

CZlaC?+e | (6)
Z=0

C,F, = 2CF, Y

F2 = F2+ + e ®)
4

F?' 1 « F% 4+ ¢~ )




C,F, = C,F, + F, (10)

C,F, = CF, + CF )
C,F, = CF, + C (12)
C, = 2C (13)

In actuality, there are other possible reactions that could yield the same chemical species. But,
for an equilibrium calculation, the reactions chosen are arbitrary as long as they are linearly
independent and account for all possible species.

Writing these reactions in terms of equilibrium relations for the partial pressures, we have

K,/ = I]p/ (14

where the K, ; are the equilibrium constants for the reaction (j) at the equilibrium temperature
T, in terms of the partial pressures. Using the appropriate formulations, they may also be put
in terms of concentrations, K., or number densities, K,. It is important to note in the above
equations that the equilibrium constants are written as functions of temperature only, as most
authors point out. However, they may be functions of two or more state variables depending on
whether such things as thermal non-equilibrium assumptions or electronic partition function
cutoff is taken into account.*

In addition to twenty-two independent equations relating the twenty-five unknown partial
pressures, we need three more equations to solve for the gas composition. The three chosen are;
conservation of nuclei, Dalton's Law, and charge neutrality. The ideal thermal gas law for each
species is written in the form

p; = nkT, (15)
where

P=Y 0 16)
For charge neutrality, we have

25

E Zniz =0 (17)




In terms of partial pressures, this becomes ( for ideal gases )

Z (1
> z[_)p,.z -0 ()
i=1 T,
For conservation of nuclei, we write
1 1
(nC2F4)O = —i(nc)o = z(np)o (19)
where
2 20)
(nc)o = ; Nnic,,
and
= @1)
(ng), = Z; NniFN

where (nc,g), 1S the total number of tetrafluoroethylene molecules available for dissociation and
ionization (ie. the number of C,F, molecules present if the gas was non-reacting at some initially
low temperature). Dividing Eq. (20) by Eq. (21) and utilizing Eq. (19) gives us the nuclei
conservation statement, where the number densities are related to the partial pressures by Eq.
(15).

CALCULATION OF THE EQUILIBRIUM
CONSTANT - PARTITION FUNCTIONS

To solve the system of equations, we only need values for the equilibrium constants which
may be calculated from equilibrium statistical mechanics. In terms of partition functions Q;, the
law of mass action for a general system is

-Aey
vi vi 22
K = TIN' = ¢ 7 T] ! -
or alternatively, substituting n; = N;/V we have
. -Ag,
K - I = (5] e ™ IIQ @)

where v; is the stoichiometric mole number for species (i), that is, the coefficients in the
balanced chemical equation, Ag, is the reaction energy (change in zero-point energy) and Q; is




the total partition function for species (i). Thus, for a given reaction and thermodynamic state,
the only unknowns in Eq. (23) are the Q;'s.
For a system in thermodynamic equilibrium, we have

(24)

which gives the number of particles N;" in energy level ¢; with g; degenerate states. We define
the partition function, Q, as the sum in the denominator of Eq. (24)

Q= Eg-e% @
J

which is, in general, a function of T and V. It is typical to express the total energy as the sum
of translational and internal energies. Note that Egs. (23) and (24) contain only one temperature.
For the two temperature case considered in this research we make the assumption that the heavy-
particle gas composed of neutrals and ions, has a Maxwellian distribution in velocities and a
Boltzmann distribution in energies at a heavy-particle temperature , T. The electron gas,
composed of both free and bound electrons is in equilibrium with an electron temperature T,
defined by their Maxwellian velocity distribution. Note that, in this analysis, we are ignoring the
interaction between electronic and vibrational states. Thus, we have defined a two-temperature
LTE situation. Equation (22) is the standard statistical representation of the equilibrium constant
for a one temperature system. For the multi-temperature system analyzed here we expect a
different representation. There has been some controversy about the correct form of the multi-
temperature Saha equation®®”8, Derivations using kinetic arguments yield the same form as Eq.
(22) but with T replaced by T, in the Boltzmann factor. This formulation has long been
consistent with the general assumption that ionization is in equilibrium with the electron
temperature and just replacing T by T, as an approximation. Other derivations using pure
thermodynamic arguments obtain a Saha equation in which both temperatures appear. This
inconsistency was examined in detail by Van de Sanden’, et al. and was found that these
representations were derived using the standard form of the generalized law of mass action, that
is

Y w,v, =0 (26)

which is proven incorrect for a multi-temperature system because it may violate the second law
of thermodynamics for the system as a whole. Van de Sanden found the correct form to be
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Which when used in the thermodynamic derivation results in a Saha equation equivalent to that
obtained by the kinetic one. Thus in this research the equilibrium constant for ionization reactions
is Eq. (22) with T, in the exponential term.

For a molecule we have

€ = errans + arot + evib + E:el (28)

and for an atom
(29)

€ = strans + ael

where ¢ is the sensible energy, measured above the zero-point energy €,. Quantum mechanics
gives us theoretical values for the quantized energies of a particle, at least for the translational,
rotational, and vibrational modes.® Along with the assertion that particle energy is simply the sum
of the modal energies, that is, the internal energies are uncoupled, which is a consequence of the
more fundamental assumption of a separable Hamiltonian, the partition function is expressed as
the product of the modal partitions Q;, where

e-=TI¢ (30)

with j extending over all modes, that is, translational, rotational, vibrational, and electronic

modes. Armed with the quantized values for the modal energies, and the associated degeneracies

we can calculate the modal partition functions which are given here in reduced form, without
10

proof as
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th - 81'5 IfT (32)
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1
Qi = — (33)




where o is a factor which arises from the symmetry requirements of the wave function in the
exchange of an identical particle. It is equal to 1 for heteronuclear molecules (ex. CF), and equal
to 2 for homonuclear molecules (ex. F,). This number may take other values depending on the
complexity of the molecular structure. The rotational and vibrational partition functions are
derived assuming that the molecule is a rigid rotator and harmonic oscillator, respectively. For
any general polyatomic molecule of N atoms, if we still assume a separable Hamiltonian then
we can factor the partition function as in Eq. (30) with the product extending not only over all
fundamental modes but also over all modal degrees of freedom.!' For a polyatomic molecule
- composed of N atoms, there is a total of 3N geometric degrees of freedom. Translation requires
3 degrees of freedom thus there are a total of 3N-3 degrees of freedom available for the internal
modes. For linear polyatomic molecules the rotation can be completely specified by two angles,
thus taking up two more degrees of freedom. This leaves 3N-5 degrees of freedom for vibration.
The rotational partition function if still given be Eq. (32). For nonlinear molecules three angeles
are necessary thus there are a total of 3N-6 geometric degrees of freedom for vibration. The
rotational partition function in this case is given by!!

1 3 1
a1 _2{8w%kT\3 3
Qrot =0 ' T 2 ( h2 )2 (IAIBIC)Z (34)

For each case the total vibrational partition function is taken as the product of each of the
vibrational degrees of freedom with the partition function for each degree of freedom given by
Eq. (33). As stated earlier, we have assumed uncoupled energy modes. That is, we assume that
the energy exchange between energy modes is small. As a result each energy mode which is
equilibrium at its temperature, in our case either T or T, is statistically independent from all
others. Thus for our multi-temperature system we can write

e -TIe() &

where T; is the equilibrium temperature of the mode.

Note that the Boltzmann factor, €®4, in the above equations for the partition functions is
written as derived in the standard one-temperature system case. That is, where $=1/Kt. It has
been known for a long time that certain molecules have the tendency to have their vibrational
modes to be a strong function of electron temperature, that is T, = T, instead of T. Atmospheric
gasses, especially nitrogen are well known for this property'>"?. This phenomena is thought to
be largely due to the propensity of the molecule for vibrational resonance. Since we are dealing
with a gas mixture containing twelve molecular species a more formal examination of the
situation is required to support our assumptions. We define a parameter n which quantifies the
fractional energy exchange between thermal systems, in our case it is the fractional energy
exchange between systems at the equilibrium electron temperature, ie. the electron gas, and other
internal modes. From the results derived in Appendix 1 we find that our Lagrange multiplier
becomes




[5 - nTH + (1 "])Te (36)
kT,T,

At this point in time, research is being done on how to set the n parameter effectively.
Consistent with the assumptions made thus far we have for the interaction of free electrons and
bound electrons = 1 thus B = 1/Kt, for Q.. And for the interaction of free electrons and the
translational, rotational, and vibrational modes n = 0 thus 8 = 1/Kt, for the partition functions
for these modes.

For electronic energy there is no closed form general expression for the quantized energy
levels, thus the electronic partition function must be left as an infinite series in the form

Q=Y ge ™ oo

Equation (37) is the true theoretical representation of the electronic partition function for an
isolated particle. In theory there are an infinite number of electronic levels extending from the
ground state energy (e, = 0) to the ionization potential, which is the amount of energy needed
to remove an electron from its ground state to infinity ( ie. undergo a bound-free transition). The
electronic partition function is a diverging series because although the energy approaches a finite
limit, the degeneracy increases as the square of the principal quantum number, so the series
diverges.**

In actuality, the electronic series in not infinite because a particle in the real world is never
truly isolated. Due to various interparticle interactions that arise in any finite density medium,
the series will actually terminate at some principal quantum number, n®°", The evaluation of
n™°% and its associated effect of ionization potential lowering is the subject of some controversy
and was explored in detail in another work.* Results from that work give the correct cutoff
criterion as

(38)

where a=7.,*¢*/2*IP. The lowered ionization potential is given by

1

IP = IP|1 - 39)

ncutoﬁ‘




The K,'s are converted to K,'s using the relation

Ev,. Vi
@0) K, (T) = (k) (1} T, )Kum

The required molecular and atomic data, which are too numerous to give here, are taken from
the works of Chase,'* Moore,'%!” Rosenstock, '® Herzberg,'® Buckely,? and Paulino and Squires.?!

SOLUTION OF THE EQUILIBRIUM
EQUATIONS

The equations given in the previous section to calculate the equilibrium composition in terms
of partial pressures, given T , T, and P, provide a closed set of twenty-five coupled nonlinear
algebraic equations for which there is no analytic solution and numerical methods must be used.
The numerical solution of systems of nonlinear equations is universally very difficult and is a
topic of current research. As of yet, there are no appropriate numerical methods for solving
coupled nonlinear systems of algebraic equations from arbitrary starting vectors.”? One of the
most commonly used methods and the one used previously for nitrogen research,* is the Newton-
Raphson method. The Newton-Raphson method usually exhibits excellent convergence qualities
when the starting vector (initial guesses for the roots) is near the actual root. For a homonuclear
diatomic gas a good initial guess can usually be obtained through Saha-type statistical arguments
using weighted averages due to limited reactive simultaneity. In this case though, since we are
dealing with a polyatomic heteronuclear gas, it was initially assumed that we could not get close
enough to the root for Newton-Raphson to work properly. Many hybrid techniques have been
proposed but most fail when the Jacobian becomes singular, or at stationary point.”* The
solution procedure initially chosen for this research is the one proposed by Powell.” Powell's
technique exhibits almost guaranteed convergence even for poor initial guesses. It also has the
ability to correctly handle stationary points. The price of this behavior is that the convergence
is linear until very close to the root then it converges quadratically like the standard Newton- -
Raphson. Thus, the total number of iterations required is greatly increased resulting in much
longer runtimes, up to 200 minutes per isobar on a workstation . Thus, it was decided that the
Newton-Raphson method would be used combined with a raster processing iteration procedure
throughout the computational thermodynamic space.

Given T, T,, and P, an initial equilibrium composition is approximated using simple Saha-type
arguments assuming totally uncoupled physical process at low T and T,, then partial pressures
are backed out using weighted approximations or the initial guess was set equal to the previous
converged root at the last temperature and pressure and stepped up in temperature on each isobar
in small increments of from 0.1 to 10 K for heavy particle temperatures and 1 K to 100 K for
electron temperatures. The completely closed system is solved at each point using the Newton-
Raphson procedure, which iterates until the sum of the absolute values of the corrections is less
than the chosen tolerance, {, where




The K,'s are converted to K,'s using the relation
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The required molecular and atomic data, which are too numerous to give here, are taken from
the works of Chase,'* Moore, '*!'” Rosenstock, '® Herzberg,'® Buckely,? and Paulino and Squires.?!

SOLUTION OF THE EQUILIBRIUM
EQUATIONS

The equations given in the previous section to calculate the equilibrium composition in terms
of partial pressures, given T , T, and P, provide a closed set of twenty-five coupled nonlinear
algebraic equations for which there is no analytic solution and numerical methods must be used.
The numerical solution of systems of nonlinear equations is universally very difficult and is a
topic of current research. As of yet, there are no appropriate numerical methods for solving
coupled nonlinear systems of algebraic equations from arbitrary starting vectors.?? One of the
most commonly used methods and the one used previously for nitrogen research,* is the Newton-
Raphson method. The Newton-Raphson method usually exhibits excellent convergence qualities
when the starting vector (initial guesses for the roots) is near the actual root. For a homonuclear
diatomic gas a good initial guess can usually be obtained through Saha-type statistical arguments
using weighted averages due to limited reactive simultaneity. In this case though, since we are
dealing with a polyatomic heteronuclear gas, it was initially assumed that we could not get close
enough to the root for Newton-Raphson to work properly. Many hybrid techniques have been
proposed but most fail when the Jacobian becomes singular, or at stationary point.”2* The
solution procedure initially chosen for this research is the one proposed by Powell.? Powell's
technique exhibits almost guaranteed convergence even for poor initial guesses. It also has the
ability to correctly handle stationary points. The price of this behavior is that the convergence
is linear until very close to the root then it converges quadratically like the standard Newton-
Raphson. Thus, the total number of iterations required is greatly increased resulting in much
longer runtimes, up to 200 minutes per isobar on a workstation . Thus, it was decided that the
Newton-Raphson method would be used combined with a raster processing iteration procedure
throughout the computational thermodynamic space.

Given T, T, and P, an initial equilibrium composition is approximated using simple Saha-type
arguments assuming totally uncoupled physical process at low T and T,, then partial pressures
are backed out using weighted approximations or the initial guess was set equal to the previous
converged root at the last temperature and pressure and stepped up in temperature on each isobar
in small increments of from 0.1 to 10 K for heavy particle temperatures and 1 K to 100 K for
electron temperatures. The completely closed system is solved at each point using the Newton-
Raphson procedure, which iterates until the sum of the absolute values of the corrections is less
than the chosen tolerance, {, where




(41)

where ¢ = 10* or until a maximum of 20,000 iterations are performed. Convergence to the
tolerance is usually obtained quickly. An additional convergence check is performed after each
completed iteration so that the total isobaric deviation is not allowed to exceed 5%. The correct
composition is now known to within desired accuracy. The mixture molecular is computed using
the expression

25 .
MMG =Y X MM, (42)

i=1

where X; is the mole fraction of species i, obtained using

x =M (43)

where n,, is, of course, just the total number of particles.

CALCULATION OF THE THERMODYNAMIC PROPERTIES

For a given temperature and pressure, the complete gas composition is calculated using the
techniques in the previous section. Often, however, it is necessary to have the thermodynamic
properties of the gas. In this research, the calculated thermodynamic properties are specific
enthalpy (h), specific internal energy (e). The specific heats (c, and c,), and consequently the
ratio of specific heats (y), were not calculated for there is some ambiguity as to the definition
of specific heat for a multi-temperature system and they are rarely used in high-temperature
calculations anyway.

On a microscopic scale, a particle (atom or molecule) may possess energy due to its
translational, rotational, vibrational, and electronic modes. This is expressed as

trans rot vib el
€ =¢ i i (44)

where e is the total specific internal energy. Note that e is actually the total specific sensible
internal energy and is measured above the zero point (e=e-e,; where €, is the summation of the
zero point energies for the individual modes of translation, vibration, and electronic. The
rotational mode has no zero point energy. In terms of partition functions, the energy and
enthalpy for a one temperature system is expressed as'




e = RTZ(M) 45)

aT
h = RT + RTI(M) (46)
aT |,
with the relation
h=e+Pv (47)

holding for any type of gas, whether calorically perfect, thermally perfect, or chemically
reacting. The expressions for the modal partition functions explained earlier. Taking the
derivatives of the logarithms and using Eq. (45) we get

el - 3RT (48)
2
e = RT (49)
and
. hv, 1
vib _ i
“ T RT kT (50)
)

Again, for the electronic energy, the lack of a closed form partition function leaves us with

aaniel
oT
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where R; = Rygc/MM,; is the specific gas constant. The translational and rotational modes are
assumed to be fully excited. For a multi-temperature system, composed of n subsystems each in
equilibrium at their own temperature T, as long as the subsystems are statistically independent
then the fundamental thermodynamic relations may be applied to each temperature subsystem
separately’, thus we write Eqs. (45) and (46) as
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n

e = RT:(M) (52)

onQ (T
h = RT, + RT? Q) (53)
aT, \
For a mixture of N species, the total mixture sensible internal energy is
N .
e =Y ce, (54)
i=1
where c; is the mass fraction of species i, given by
m
Similarly, the specific enthalpy for a mixture of N species is given by
N
h=Y ch, (56)
i=1
h; =€ + RT + (Ahy (57)

where again, c; is the mass fraction and h; is the specific enthalpy for species i. The internal
energy at each required temperature and pressure is calculated using Eqs. (48)-(51) combined
with Egs. (54) and (55).The solution procedure required a previous call to the equilibrium
composition subroutine to input the partial pressures and mixture molecular mass. The electronic
derivatives appearing in Eq. (51) are calculated using a 4™-order four-point Richardson
extrapolation with AT = .01K. The derivatives were taken with a frozen principal quantum
number cutoff. This was done for ease of calculation and to avoid the problem other authors'
experienced with large computational derivatives being obtained if the temperature and pressure
state corresponded to a partition function jump due to the addition or subtraction of another
electronic level. '

RESULTS AND DISCUSSION
The chemical composition in terms of the mole fractions at 1 atm. and TJ/T = 1.0 from 580.2

K to 58,020 K is shown in Fig. 1. We see the same rapid dissociation of C,F, as observed by
Paulino and Squires® due to the inherent weakness of the carbon double bond in this molecule




as a result of the repulsive electronic weakening of the bond. The results are consistent with
those obtained by Kovitya.?® Figure 2 shows a view of the composition on a logarithmic scale.
Figure 3 shows the composition in the low temperature region where molecules dominate. In our
case we see that at about 800 K C,F, partially dissociates into C,F, and CF,, recombines
somewhat as temperature increases, creating a region where C,F,, CF,, and CF; dominate at
about 1700 K. Dissociation of C,F, and CF, begins at about 2,000 K into large amounts of CF,
which is almost completely dissociated by 4,000 K. The primary dissociation products are F and
C which reach their maxima at about 5,000 K. Past this temperature ionization begins to occur
and singly ionized C and F and electrons dominate the composition. Second ionization begins
to occur between 22,500 and 25,000 K. Figures 4 through 9 show representative species
compositions of C, C*, F, F*, e and CF, at two different pressures, 1 atm and .1 atm, for the
case of thermal nonequilibrium. They are given for four heavy isotherms of .05, .1, 1, and 5
ev. Here we see drastically different behavior due to the highly energetic electrons at their
elevated temperature. Dissociation of CF, happens rapidly, other molecules exhibited similar
behavior. Single and multiple ionization of C and F follows the expected pattern of following
the electron temperature, consistent with our original formulation. Figure 8, the electron partial
pressure, shows we reach regions where dP./dT, goes to zero. The composition is constant after
this for we had assumed that the maximum ionic charge state was four. This suggests that for
a correct chemical model at elevated electron temperatures we may need to extend the possible
ionic species to a greater charge value. The degree if ionization is shown in Figs. 10 and 11. The
results show that it tends to be a stronger function of heavy particle temperature as pressure
increases at a given electron temperature. And reduced pressures result in greater degrees of
ionization, as is expected. The molecular ionic and electronegative species were found to exist
in only very small amounts at all T,/T values. Figure 12 shows the mixture enthalpy and internal
energy for the single temperature case. Here we see that it is a very strong function of
temperature throughout the molecular region. Figures 13 and 14 the mixture enthalpy and
internal energy for the two-temperature case. We see the most drastic changes with electron
temperature in the region below 10,000 K in electron temperature. After this we also see larger
differences with pressure for each heavy particle temperature. In future work it is planned to
include multi-phase species in like amorphous carbon. Molecular effects that are being evaluated
for inclusion in future models include anharmonic vibrations and internal energy mode coupling.
Also research is being performed to develop the complete reactive transport model for this
complex mixture.

APPENDIX 1

For statistically independent subsystems, the energy, entropy and other thermodynamic
quantities are still additive. Thus ‘

§=YS, and E=YE, (58)

Taking the derivatives of the above we get




dS =Y dS, and dE =Y dE, (59)

Using the proper form for the second law for a multi-temperature system’

3

ds >y 29 (60)
Tn
where 6Q,=dE,+6W,, and 6W,=p,dV. Then we see that
dE
(@S)yzy > T = (61
Now, for brevity, we invoke the relation, without proof that?’1°
S = kNIn(Q) + kBE (62)

And due to the fact that the n subsystems are statistically independent such that the above
equation, which is derived for a system in thermodynamic equilibrium also holds for all separate
subsystems then we write’

S, = kN In(Q,) + kBE, (63)
so that
(dS)yry = kBAE (64)
therefore
dE
kBY dE, = Y —* (65)
For our two-temperature system
Y dE, = dE, + dE, (66)

and

) P + ¢ ' (67)
T T, T

thus




T.dE, + T,dE,

(68)

kB(dEy + dE,) = -
H e

Now we define an "economy" between the heavy particle and electron energies, n, which defines
the fractional contribution of each to the total energy in any state. Lets express it as

E, =nE | (69)
and
E,=(1 -1)E (70)
Then
dE, = ndE (71)
and
dE, = (1 - 1)dE (72)

which upon substitution into Eq. (68), and the subsequent cancellation of dE yields that

T 1 -0)T
p = Tl H +( Tl) e (73)
kT,T,
with the limits that if
1
1 d =
b= 2r ‘
n = (74)
1
O - = —
P kT,
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Figure 1. Teflon composition at 1 atm. for isothermal case.
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MODELING OF IMPEDANCE COLLAPSE
IN HIGH-VOLTAGE DIODES

P. J. Turchi ! and R.E. Peterkin, Jr.

Air Force Research Laboratory
Kirtland AFB, NM, USA

ABSTRACT

Electron-beam diodes driven by fast-rising, high-voltage pulses often operate
with cold cathodes for which the presence of a plasma adjacent to the cathode surface is
essential to obtain adequate electron emission. A consequence of such surface plasma,
however, is closure of the interelectrode gap by plasma motion. The diode impedance
decreases with time, adversely affecting the efficiency of coupling to the power source.
Plasma closure of the diode gap also limits the length of the electron beam pulse, and
the ability to operate the diode repetitively at high frequency. Resistive heating of the
plasma competes with work performed in expanding the plasma and heat transfer to the
cold-cathode boundary. The resulting closure speed is calculated, using an MHD code,
and found to agree well with results of experiments using organic-cloth cathodes at 35
kV. Computed plasma speeds are typically 8 - 12 km/s, and are relatively insensitive to
the applied voltage. Gap closure due to the plasma motion calculated numerically
corresponds to estimates based on impedance collapse in the experiments.

INTRODUCTION

Closure of the interelectrode space in electron-beam diodes operating with cold-cathodes is a
well-known phenomena limiting the performance of such devices. Plasma adjacent to the cathode
surface is needed to obtain adequate electron emission for space-charge limited flow in the diode. Such
plasma, however, can cross the diode gap, resulting in collapse of the diode impedance during the high-
voltage pulse. This behavior adversely affects the efficiency of coupling between the electron beam and
the power source, limits the duration of the electron-beam pulse, and may preclude operation at desired
repetition rates. It is useful, therefore, to understand factors that determine plasma closure in electron-
beam diodes in the context of theoretical modeling that can then be employed to examine directions for
improvement. The first step in such modeling consists of simulating existing experiments using
techniques that can be extended to more complex possibilities.

The simplest representation of plasma closure in a diode comprises a thin layer of uniform
plasma between a solid cathode surface and a region representing the vacuum in the diode gap. The
physical model consists of expansion of the plasma across the gap, with resistive heating compensating
for the loss of internal energy to work and heat transfer. Even this elementary model is too complex for
accurate analytical treatment, so numerical techniques are necessary. Estimates of particle density and
temperature for the surface plasma suggest that a continuum approach would be appropriate for the
motion of the main portion of the plasma. The MACH2 2-1/2 dimensional MHD code is therefore a
reasonable choice of calculational tool. Such a code is, of course, clearly inadequate to model the
behavior of an electrically non-neutral, non-continuum flow.

The essential feature, however, that must be calculated in order to compute the dynamics and
thermodynamics of the surface plasma is the current density. For MACH2, this merely requires that the
resistivity of the “vacuum” region has a value corresponding to space-charge limited flow for the
instantaneous values of applied voltage and vacuum gap. For most situations, this resistivity is
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sufficiently high to permit magnetic-flux diffusion rapidly through the “vacuum” region, which results in
nearly uniform current density normal to the surface of the plasma layer. Thermal expansion of the
plasma decreases the effective diode gap, but the resistivity of the vacuum region may be continually
adjusted to maintain the proper value of space-charge limited current density during the voltage pulse.
While this technique cannot simulate the actual behavior of the particle flow in the vacuum, it is
adequate for providing the correct power to the plasma in order to compute the motion of the main
portion of the plasma mass. Detailed consideration may then be given to penetration of electric field into
the plasma in defining the position of the electron emitting surface. This is accomplished in terms of the
local values of the Debye length at the vacuum edge of the plasma, aided by the condition of electric
field equal to zero for emission into space-charge limited flow.

USE OF THE MACH2 CODE

The MACH2 code [1] allows numerical solution of the equations for 2-1/2 dimensional, unsteady,
MHD flow. It uses an arbitrary Lagrangian-Eulerian (ALE) formulation in combination with a multiple
block format that permits application to complex geometries. In addition to classical transport properties
and ideal gas formulas, MACH2 operates with the SESAME tables for equation-of-state and transport
properties of a variety of materials. Anomalous resistivity coefficients based on plasma/beam
microinstabilities are also available, as are options for optically-thin and both equilibrium and non-
equilibrium diffusion models for radiative transport. Several opportunities exist as well for coupling
plasma dynamics to external electrical sources, including prescribed voltage or current waveforms and
self-consistent solution of lumped-element circuitry.

MACH2 is nevertheless a continuum formulation, based on electrical quasi-neutrality and local
(two- or three- temperature) thermodynamic equilibrium. Its application to problems in an electron-beam
diode is restricted to regions where the plasma density is high enough to satisfy these physical
constraints. Plasma created at the cathode surface by explosion of asperities at the cathode surface, or
by injection from a continuum plasma source, may satisfy the continuum, quasi-neutral, LTE conditions
adequately for the purpose of calculating plasma motion. The very low density, non-neutral region
between the emitting surface and the anode certainly does not. MACHZ2, however, permits the electrical
resistivity of a region or material (defined, for example, by its low mass-density) to be assigned quite
flexibly. Thus, very low-density material in the vacuum gap can be given, at any instant in the
calculation, a value of resistivity that will provide the correct total impedance corresponding to space-
charge limited flow. For the applied voltage, therefore, the correct total current will be delivered through
the expanding surface-plasma. Implicit in this approach is the approximation that the basically one-
dimensional formulation of space-charge limited flow will still be adequate to describe operation of the
vacum region. To correct the value of the current from the Child-Langmuir formula, in order to obtain the
actual experimental current before significant impedance collapse has occurred due to plasma motion, a
value of perveance is calculated. This correction factor is then held constant during diode closure.

MACH2 has not been used to calculate the actual explosion of surface asperities to create the
initial plasma. Instead, the conditions of this initial plasma (mass density, electron and heavy-particle
temperatures, and initial thickness) are assumed to be uniform, and treated as parameters in analyzing
the subsequent plasma expansion. For properties, such as the closure speed, non-dimensionalization
suggests that the the actual value of initial mass-density and initial plasma thickness are not crucial.
Similarly, low estimates of the initial temperature might be self-correcting due to enhanced resistive
heating. (Over-estimates of the temperature, however, will simply cause the plasma to expand too
quickly in comparison to experimental data.)

SPECIFICATION OF THE ELECTRON-EMISSION SURFACE

Before proceeding to solve the dynamics of plasma closure, and to examine the sensitivities of
the model to the choice of initial plasma conditions, it is necessary to develop a specification for the
position of the electron-emitting surface. For the simple case of emission from a solid surface, the diode
gap is merely the geometric distance between the electrodes, to the level of atomic dimensions.
Emission from a plasma surface is less well-defined and can involve uncertainties in effective diode-gap




on the order of the gradient scale-length for the plasma density, the mean free path for electron-electron
collisions, the (local) Debye length in the plasma, or some other condition. For the present calculations,
we have chosen to define the electron-emitting surface of the plasma based on the condition that the
electron velocity-distribution is significantly distorted from a Maxwellian distribution due to the electric
field near the emitting surface. Algebraically, this condition is written as:

E() Ao > kTe M

where Ap is the Debye length based on the local plasma temperature T, and the local electron
density, which varies sharply from the plasma layer to the vacuum region. The local electric field, E(x),
would be zero exactly at the emitting surface, as a condition of space-charge limited flow, but has a finite
value at a distance of a Debye length into diode gap, i.e., x = Ap . The condition of Eqn. 1 is thus
satisfied, for any plasma-electron temperature, when the electron density falls below some value. While
the condition could equally well have been written with a factor (of order unity) multiplying the electron
temperature, the resulting variations in diode gap would usually be less than the resolution of the
calculational grid employed in the present work. Furthermore, within the approximation of using the one-
dimensional, Child-Langmuir formula for space-charged limited flow, we monitor the diode gap according
to Eqn. 1 only at one position along the surface (e.g., half-radius). A more laborious approach involving
local calculation of the diode gap is deferred until warranted by substantially two-dimensional motion of
the plasma surface and until an appropriate substitute for the Child-Langmuir formula can be developed,
(which probably will require a particle-in-cell calculation).

CALCULATIONAL RESULTS

The first application of the present model has been to a set of experiments [2] performed with
carbon-cloth cathodes at relatively modest applied voltages (~ 35 kV). These experiments were chosen
for simulation because the clean and simple voltage waveform (linear rise and fall surrounding a
relatively long constant value) allowed less uncertainty in comparing theoretical and experimental
behavior. The experimental arrangement comprises a cylindrical cathode, 2 cm in radius, with a circular
endface covered by the emitting carbon-cloth, separated by a gap of 0.5 cm from a screen anode; (the
experiments were directed toward virtual-cathode operation for microwave production.) Figure 1 displays
the experimental and theoretical waveforms for voltage and current. As previously noted, a perveance
factor is included in the calculation to match space-charge limited flow to the experimental current value
before significant diode closure has occurred (t < 50 ns). This factor is held constant during the
subsequent plasma motion. The computed current waveform agrees rather well with the experimental
curve scanned from the published oscillogram. Experimental behavior from 210 to 300 ns is difficult to
discern due to relatively high amplitude, high-frequency oscillations on the trace; the calculations assume
an inductance of 100 nh in series with the diode, which may be somewhat too high.

Figure 2 provides the calculated voltage and current waveforms along with the diode gap. In
these calculations, which serve as a baseline for parameter variations, the initial electron and ion
temperatures in the plasma layer are 1.0 eV and 0.1 eV, respectively, and the initial plasma (mass)
density is 107 kg/m>. (These values are chosen arbitrarily, but should be relevant to low temperature
plasmas.) The material of the plasma is carbon phenolic, available in the SESAME tables, and was
chosen in order to account for the complicated molecular composition of the carbon-cloth cathode, which
consists of silk and rayon (vs pure carbon). The effective molecular mass of the phenolic is 9.01 amu.
The initial thickness of the surface plasma is 0.5 mm, but rapidly increases to about 1 mm, due to the
application.f Eqn. 1 to the density distribution computed at early times.

The speed of plasma closure is not constant, but corresponds to an average speed of 8 km/s.
This value is consistent with the estimates from the experimentally-observed decrease of diode
impedance with time (assuming Child-Langmuir behavior). Such consistency, of course, is directly
associated with the good agreement between experiment and theory for the diode current. In addition to
the overall behadvior of diode impedance -collapse due to plasma motion, the MACH2 simulations




provide detailed descriptions of plasma properties and distributions within the diode. Examples of this
information are given in Fig. 3, which displays the shape of the interface between plasma and vacuum,
and contours of mass density and electron temperature.

SENSITIVITIES TO PARAMETER CHOICES

The choices of initial values for the plasma layer may be informed by experience, but are
certainly arbitrary in the present work. It is necessary, therefore, to explore the effects of other values on
the basic behavior of diode closure. Three important parameters are the initial values of electron
temperature, ion temperature and mass density. In the following comparisons, the voltage waveform wili
be maintained, and only one of these parameters will be varied at a time; the other parameters will be
held at their values for the baseline case previously discussed.

Figure 4 displays the current and diode gap histories for initial values of electron temperature
that are factors of two lower and higher than the baseline case, 0.5 eV and 2.0 eV, respectively. The
lower value results in little change in diode gap and corresponding small change in the diode impedance
with time; the current follows the voltage waveform. On the other hand, the higher value of initial electron
temperature results in substantial faster diode closure and a much higher value of diode current than is
observed experimentally. Comparison of the diode gap histories with that of the baseline case indicates
the importance of the early development of closure speed on subsequent decrease of the diode gap and
rapid increase of diode current (which scales inversely with the square of the gap). Higher current density
helps to maintain the plasma internal-energy as the plasma expands across the gap.The early
development of closure speed in the higher temperature case is simply a result of higher (electron)
pressure.

In Fig. 5, the initial value of electron temperature is 1.0 eV, but the initial values of ion
temperature have been increased by factors of five and ten over the baseline case, 0.5 eV and 1.0 eV,
respectively. Higher initial temperatures for the ions also means higher plasma pressure (at fixed mass
density), so closure speeds develop faster than in the baseline case. There is not as much sensitivity,
however, to variation in ion temperature (vs initial electron temperature) because the ions in the baseline
case rapidly warm up to above 0.5 eV due to heat transfer from the electrons. The effect of changing the
initial value of mass density is much less pronounced because, at fixed initial values of electron and ion
temperatures, the plasma pressure scales approximately with the mass density; (variations are possible
due to changes in ionization with density). Thus, the basic expansion speed of the plasma remains
approximately the same as for the baseline case. The results of this are observed in Fig. 6 for which
factors of ten higher and lower values of initial mass density are used.

To the extent that the simulations have captured the actual behavior of diode closure, the
agreement of the baseline case with the experimental data suggests that the properties of the initial
plasma are reasonably given by electron and ion temperatures of 1 eV and 0.1 eV, respectively. The
initial mass density, however, could be higher or lower by almost a factor of ten without disturbing this
agreement very much. :

EFFECTS OF APPLIED VOLTAGE

The present model can be employed to examine the effects of variation of circuit operation on
diode closure. For example, if the same temporal waveform is provided to the diode with different
amplitudes, the change in diode closure (and thus diode impedance history) can be predicted. Figure 7
displays the calculated diode gap histories as the amplitude of the applied voltage is increased by factors
of 1.5 - 3 over the baseline case. The average closure speed only varies by a factor of 50 % , which
agrees with experience in a variety of cold-cathode diodes. The peak speed, however, shows greater
sensitivity to applied voltage. Examination of the two-dimensional distributions of plasma in the diode
indicate that greater nonuniformity, especially faster closure near the centerline of the diode may be
responsible for these higher speeds elsewhere in the diode; (recall that the diode gap is only monitored
at mid-radius in these calculations). The basic result of the relative insensitivity of diode impedance-




collapse to applied voltage is, perhaps, the only claim that may be made until the present calculations
are extended to more two-dimensional treatment of current flow in the vacuum.

CONCLUDING REMARKS

It appears that MHD codes, such as MACH2, can be successfully employed to study plasma
phenomena in high current-density diodes. The basis for this success at present is the application to
diode problems for which one-dimensional approximations to the current flow in the vacuum are
adequate. Also, by invoking the condition of space-charge limited flow, (E(0) ~ 0), the specification of the
electron-emitting surface is facilitated. For two- or three-dimensional problems, recourse to particle-in-
cell (PIC) techniques to calculate the local current density through the plasma layer will probably be
necessary. For some problems, the development of the current flow and charge distribution in the
vacuum may occur on a timescale much shorter than the hydrodynamic expansion times for the surface
plasma. This situation may then allow calculation of diode behavior with surface plasmas by a rapid
iteration between PIC codes, run for several nanoseconds, and hydrocodes running over a microsecond,
without encountering the difficulties of including plasma motion within the PIC code itself.
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Fig. 6. Other initial mass densities at the surface
(102 and 10 kg/m® vs. 10 kg/m®) predict closure
that is less consistent with experiment.
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for different applied voltages relative to the 35
kV baseline case. The average speed is




